Skip to main content
Log in

On exact dimensional splitting for a multidimensional scalar quasilinear hyperbolic conservation law

  • Mathematics
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

A dimensional splitting scheme is applied to a multidimensional scalar homogeneous quasilinear hyperbolic equation (conservation law). It is proved that the splitting error is zero. The proof is presented for the above partial differential equation in an arbitrary number of dimensions. A numerical example is given that illustrates the proved accuracy of the splitting scheme. In the example, the grid convergence of split (locally one-dimensional) compact and bicompact difference schemes and unsplit bicompact schemes combined with high-order accurate time-stepping schemes (namely, Runge–Kutta methods of order 3, 4, and 5) is analyzed. The errors of the numerical solutions produced by these schemes are compared. It is shown that the orders of convergence of the split schemes remain high, which agrees with the conclusion that the splitting error is zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Chapman and Hall/CRC, London, 2001; Fizmatlit, Moscow, 2012).

    MATH  Google Scholar 

  2. V. D. Sharma, Quasilinear Hyperbolic Systems, Compressible Flows, and Waves (CRC, New York, 2010).

    Book  MATH  Google Scholar 

  3. R. J. LeVeque, Numerical Methods for Conservation Laws, 2nd ed. (Birkhäuser, Berlin, 1992).

    Book  MATH  Google Scholar 

  4. G. I. Marchuk, Splitting Methods (Nauka, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  5. A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001).

    Book  MATH  Google Scholar 

  6. N. N. Yanenko, The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables (Nauka, Novosibirsk, 1967; Springer-Verlag, Berlin, 1971).

    Book  MATH  Google Scholar 

  7. R. J. LeVeque, PhD Thesis, Report No. STAN-CS-82-904 (Stanford Univ., Stanford, 1982).

    Google Scholar 

  8. Z.-H. Teng, SIAM J. Numer Anal. 31 (1), 43–63 (1994).

    Article  MathSciNet  Google Scholar 

  9. H. Holden, K. H. Karlsen, K.-A. Lie, and N. H. Risebro, Splitting Methods for Partial Differential Equations with Rough Solutions (Eur. Math. Soc., Zurich, 2010).

    Book  MATH  Google Scholar 

  10. A. V. Bobylev and T. Ohwada, Appl. Math. Lett. 14 (1), 45–48 (2001).

    Article  MathSciNet  Google Scholar 

  11. A. D. Polyanin, V. F. Zaitsev, and A. Moussiaux, Handbook of First-Order Partial Differential Equations (Taylor and Francis, London, 2002; Fizmatlit, Moscow, 2003).

    Book  MATH  Google Scholar 

  12. L. M. Skvortsov, Mat. Model. 14 (2), 3–17 (2002).

    MathSciNet  Google Scholar 

  13. A. I. Tolstykh, Compact Finite Difference Schemes and Application in Aerodynamic Problems (Nauka, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  14. B. V. Rogov, Dokl. Math. 86 (1), 582–586 (2012).

    Article  MathSciNet  Google Scholar 

  15. M. D. Bragin and B. V. Rogov, Comput. Math. Math. Phys. 54 (5) 831–836 (2014).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Bragin.

Additional information

Original Russian Text © M.D. Bragin, B.V. Rogov, 2016, published in Doklady Akademii Nauk, 2016, Vol. 469, No. 2, pp. 143–147.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bragin, M.D., Rogov, B.V. On exact dimensional splitting for a multidimensional scalar quasilinear hyperbolic conservation law. Dokl. Math. 94, 382–386 (2016). https://doi.org/10.1134/S1064562416040086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064562416040086

Navigation