Skip to main content
Log in

On the Gardner Problem for Phase-Locked Loops

  • MATHEMATICS
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

This paper shows the possibilities of solving the Gardner problem of determining the lock-in range for multidimensional phase-locked loop models. Analytical estimates of the lock-in range for a third-order system are obtained for the first time by developing analogues of classical stability criteria for the cylindrical phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. In the literature on PLL, the use of a zero pole is recommended for extending the pull-in range, while additional stable links are recommended for improving the filtering properties [8].

REFERENCES

  1. V. V. Shakhgil’dyan and A. A. Lyakhovkin, Phase-Locked Loops (Svyaz’, Moscow, 1972) [in Russian].

    Google Scholar 

  2. B. I. Shakhtarin, Yu. A. Sidorkina, and T. G. Aslanov, Nauchn. Vestn. Mosk. Gos. Tekh. Univ. Grazhdan. Aviats. 222 (12), 59–66 (2015).

    Google Scholar 

  3. G. Leonov, N. Kuznetsov, M. Yuldashev, et al., IEEE Trans. Circuits Syst. I: Regular Pap. 62 (10), 2454–2464 (2015). https://doi.org/10.1109/TCSI.2015.2476295

    Article  MathSciNet  Google Scholar 

  4. N. N. Krasovskii, Some Problems in the Theory of Motion Stability (Fizmatlit, Moscow, 1959) [in Russian].

    Google Scholar 

  5. V. M. Matrosov, The Method of Vector Lyapunov Functions: Analysis of Dynamical Properties of Nonlinear Systems (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  6. G. A. Leonov and N. V. Kuznetsov, Nonlinear Mathematical Models of Phase-Locked Loops: Stability and Oscillations (Cambridge Scientific, Cambridge, 2014).

    Google Scholar 

  7. S. N. Vassilyev, R. I. Kozlov, and S. A. Ul’yanov, Dokl. Math. 89 (2), 257–262 (2014).

    Article  MathSciNet  Google Scholar 

  8. H. K. Khalil, Nonlinear Systems (Prentice Hall, New Jersey, 2002).

    MATH  Google Scholar 

  9. D. Abramovitch, “Phase-locked loops: A control centric tutorial,” Proceedings of American Control Conference (IEEE, 2002), pp. 1–15.

    Google Scholar 

  10. F. M. Gardner, Phaselock Techniques, 3rd ed. (Wiley, New York, 2005).

    Book  Google Scholar 

  11. R. Best, N. Kuznetsov, G. Leonov, et al., IFAC Annu. Rev. Control 42, 27–49 (2016). https://doi.org/10.1016/j.arcontrol.2016.08.003

    Article  Google Scholar 

  12. A. Kh. Gelig, G. A. Leonov, and V. A. Yakubovich, Stability of Nonlinear Systems with a Nonunique Equilibrium State (Nauka, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  13. D. Abramovitch, “Analysis and design of a third order phase-lock loop,” Proceedings of IEEE Military Communications Conference “21st Century Military Communications—What’s Possible?” (IEEE, USA, 1988), pp. 455–459.

  14. K. Alexandrov, N. Kuznetsov, G. Leonov, et al., IFAC-PapersOnLine 48 (11), 720–724 (2015). https://doi.org/10.1016/j.ifacol.2015.09.274

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-41-02002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kuznetsov.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, N.V., Lobachev, M.Y., Yuldashev, M.V. et al. On the Gardner Problem for Phase-Locked Loops. Dokl. Math. 100, 568–570 (2019). https://doi.org/10.1134/S1064562419060218

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064562419060218

Navigation