Skip to main content
Log in

General areas of the use of a microwave radiation for processing of plant raw materials (review)

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

In the last decade, the use of a microwave radiation in the chemistry of plant raw materials has attracted the attention of a growing number of scientists. This review is devoted to an analysis of recent publications in this area, the number of which is exponentially increased. The main fields of application of microwave radiation in the chemistry and technology of plant raw materials have been discussed, including extraction of the low-molecular weight compounds of different classes both in an individual state and in compositions (for example, essential oils) from natural plant objects; an isolation of high-molecular weight structural biopolymers (cellulose, lignin, and hemicelluloses); processes of drying of plant materials; wood pyrolysis; hydrolysis of high-molecular weight components of plant raw materials; chemical modification of plant biopolymers with the aim to obtain ethers, esters, and other derivatives; chemical modification of plant raw materials without prior separation into individual components; and other processes. Microwave radiation was shown to be efficient for these processes. In general, microwave radiation was found to considerably accelerate processes and significantly reduce energy costs. Examples of implementation of the described processes in industry were given. At present, processes and mechanisms that occurred under the action of the microwave radiation on a plant material has been little studied and requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheldon, R.A., Chem. Soc. Rev., 2012, vol. 41, no. 4, pp. 1437–1451.

    Article  CAS  PubMed  Google Scholar 

  2. Höfer, R. and Bigorra, J., Green Chem. Lett. Rev., 2008, vol. 1, no. 2, pp. 79–97.

    Article  CAS  Google Scholar 

  3. Michael, D., Mingos, P., and Baghurst, D.R., Chem. Soc. Rev., 1991, vol. 20, no. 1, pp. 1–47.

    Article  Google Scholar 

  4. Metaxas, A.C. and Meredith, R.J., Industrial Micro wave Heating, London: P. Peregrinus, 1983, Vol. 1.

    Google Scholar 

  5. Kingston, H.M. and Jassie, L.B., Introduction to Microwave Sample Preparation: Theory and Practice, Washington: American Chemical Society, 1988.

    Google Scholar 

  6. Strauss, C.R. and Trainor, R.W., Austral. J. Chem., 1995, vol. 48, no. 10, pp. 1665–1692.

    Article  CAS  Google Scholar 

  7. Rakhmankulov, D.L., Bikbulatov, I.Kh., Shulaev, N.S., and Shavtukova, S.Yu., Mikrovolnovoe izluchenie i intensifikatsiia khimicheskikh protsessov (Microwave Radiation and Intensification of Chemical Processes), Moscow, 2003.

    Google Scholar 

  8. Meredith, R.J., Engineers Handbook of Industrial Microwave Heating, London: The Institution of Engi neering and Technology, 1998.

    Book  Google Scholar 

  9. Ishii, T.K., Handbook of Microwave Technology, Vol. 1: Components and Devices, San-Diego: Academic Press, 1995.

    Google Scholar 

  10. Ishii, T.K., Handbook of Microwave Technology, Vol. 2: Applications, San-Diego: Academic Press, 1995.

    Google Scholar 

  11. Datta, A.K., Handbook of Microwave Technology for Food Application (Food Science and Technology), NY: Marcel Drekker AG, 2001.

    Google Scholar 

  12. Fernández, Y., Arenillas, A., and Menéndez, J.A., Advances in Induction and Microwave Heating of Min eral and Organic Materials, Intech, 2011.

    Google Scholar 

  13. Chandra, U., Microwave Heating, Intech, 2011.

    Book  Google Scholar 

  14. The Development and Application of Microwave Heating, Cao, W., Ed., Intech, 2012.

  15. Sanghi, R. and Singh, V., Green Chemistry for Environ mental Remediation, CRC Press, Taylor and Francis Group, 2012.

    Google Scholar 

  16. Paré, J.R.J., Bélanger, J.M.R., and Stafford, S.S., Trends Anal. Chem., 1994, vol. 13, no. 4, pp. 176–184.

    Article  Google Scholar 

  17. Microwave-Enhanced Chemistry. Fundamentals, Sam ple Preparation and Applications, Kingston, H.M. (Skip) and Haswell, S.J., Eds., Washington: American Chemical Society, 1997.

  18. Kubrakova, I.V., Usp. Khim., 2002, vol. 71, no. 4, pp. 327–340.

    Article  CAS  Google Scholar 

  19. Kubrakova, I.V., Myasoedova, G.V., Eremin, S.A., Pletnev, I.V., Mokhodoeva, O.B., Morozova, V.A., and Khachatryan, K.S., Metody Ob”ekty Khim. Anal iza, 2006, vol. 1, no. 1, pp. 27–34.

    Google Scholar 

  20. Camel, V., Trends Anal. Chem., 2000, vol. 19, no. 4, pp. 229–248.

    Article  CAS  Google Scholar 

  21. Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L., and Rousell, J., Tetrahedron Lett., 1986, vol. 27, no. 3, pp. 279–282.

    Article  CAS  Google Scholar 

  22. Giguere, R.J., Bray, T.L., Duncan, S.M., and Majetich, G., Tetrahedron Lett., 1986, vol. 27, no. 41, pp. 4945–4948.

    Article  CAS  Google Scholar 

  23. Romanova, N.N., Gravis, A.G., and Zyk, N.V., Usp. Khim., 2005, vol. 74, no. 11, pp. 1159–1105.

    Article  CAS  Google Scholar 

  24. Lidström, P., Tierney, J., Wathey, B., and Westman, J., Tetrahedron, 2001, vol. 57, no. 45, pp. 9225–9283.

    Article  Google Scholar 

  25. Kappe, C.O. and Stadler, A., Microwaves in Organic and Medicinal Chemistry, Weinheim: WILEY-VC, 2005.

    Book  Google Scholar 

  26. Kappe, C.O., Dallinger, D., and Murphree, S.S., Practical Microwave Synthesis for Organic Chemists, Weinheim: WILEY-VC, 2009.

    Google Scholar 

  27. Strauss, C., Green Chemistry, 1999, August, pp. G94–G96.

    Google Scholar 

  28. Kappe, C.O. and Dallinger, D., Mol. Divers., 2009, vol. 13, no. 2, pp. 71–193.

    Article  CAS  PubMed  Google Scholar 

  29. Mallakpour, S. and Rafiee, Z., Iran. Polym. J. (Engl. Ed.), 2008, vol. 17, no. 12, pp. 907–935.

    CAS  Google Scholar 

  30. Bogdal, D. and Prociak, A., Microwave-Enhanced Polymer Chemistry and Technology, Blackwell Publish ing Ltd., 2007.

    Book  Google Scholar 

  31. Chemat, F. and Cravotto, G., Microwave-Assisted Extraction for Bioactive Compounds. Theory and Prac tice, Springer US, 2013.

    Book  Google Scholar 

  32. Destandau, E., Michel, T., and Elfakir, C., Micro wave-Assisted Extraction, Cambridge, 2013.

    Google Scholar 

  33. Delazar, A., Nahar, L., Hamedeyazdan, S., and Sarker, S., Natural Products Isolation, 2012, vol. 864, pp. 89–115.

    Article  CAS  Google Scholar 

  34. Kokolakis, A.K. and Golfinopoulos, S.K., Natural Product Communications, 2013, vol. 8, no. 10, pp. 1493–1504.

    CAS  PubMed  Google Scholar 

  35. Chua, L.S., J. Ethnopharmacol., 2013, vol. 150, no. 3, pp. 805–817.

    Article  CAS  PubMed  Google Scholar 

  36. Das, A.K., Mandal, V., and Mandal, S.C., Phytochem. Anal., 2013, vol. 25, no. 1, pp. 1–12.

    Article  PubMed  CAS  Google Scholar 

  37. Mason, T.J., Chemat, F., and Vinatoru, M., Curr. Org. Chem., 2011, vol. 15, no. 2, pp. 237–247.

    Article  CAS  Google Scholar 

  38. Mahibalan, S., Sharma, R., Vyas, A., Basha, S.A., and Begum, A.S., J. Indian Chem. Soc., 2013, vol. 90, no. 12, pp. 2199–2205.

    CAS  Google Scholar 

  39. Delgado-Torre, M.P., Ferreiro-Vera, C., Priego-Capote, F., Perez-Juan, P.M., Luque, De., and Castro, M.D., J. Agricult. Food Chem., 2012, vol. 60, no. 12, pp. 3051–3060.

    Article  CAS  Google Scholar 

  40. Karabegović, I.T., Stojičević, S.S., Veličković, D.T., Todorović, Z.B., Nikolić, N.T., and Lazić, M.L., Industr. Crops Products, 2014, vol. 54, pp. 142–148.

    Article  CAS  Google Scholar 

  41. Xu, W., Chu, K., Li, H., Zhang, Y., Zheng, H., Chen, R., and Chen, L., Molecules, 2012, vol. 17, no. 12, pp. 14323–14335.

    Article  CAS  PubMed  Google Scholar 

  42. Bai, L.S., Yang, Y., and Lv, D.D., Zhong yao cai = Zhongyaocai = J. Chinese Med. Mater., 2012, vol. 35, no. 6, pp. 977–980.

    CAS  Google Scholar 

  43. Wataniyakul, P., Pavasant, P., Goto, M., and Shotipruk, A., Bioresource Technol., 2012, vol. 124, pp. 18–22.

    Article  CAS  Google Scholar 

  44. Yan, Z., Yun, S., Jing-Shu, Z., and Hong-Li, Z., Afr. J. Biotechnol., 2011, vol. 10, no. 65, pp. 14583–14586.

    Google Scholar 

  45. Zhang, L., Wang, Y., Wu, D., Xu, M., and Chen, J., Molecules, 2011, vol. 16, no. 6, pp. 4428–4437.

    Article  CAS  PubMed  Google Scholar 

  46. Yang, Y.C., Li, J., Zu, Y.G., Fu, Y.J., Luo, M., Wu, N., and Liu, X.L., Food Chem., 2010, vol. 122, no. 1, pp. 373–380.

    Article  CAS  Google Scholar 

  47. Zou, T., Wu, H., Li, H., Jia, Q., and Song, G., J. Sep aration Sci., 2013, vol. 36, no. 20, pp. 3457–3462.

    CAS  Google Scholar 

  48. Yan, M.M., Liu, W., Fu, Y.J., Zu, Y.G., Chen, C.Y., and Luo, M., Food Chem., 2010, vol. 119, no. 4, pp. 1663–1670.

    Article  CAS  Google Scholar 

  49. Das, A.K., Mandal, V., and Mandal, S.C., Phytochem. Anal., 2013, vol. 24, no. 3, pp. 230–247.

    Article  CAS  PubMed  Google Scholar 

  50. Koptelova, E.N., Kutakova, N.A., and Tret’iakov, S.I., Khim. Rastit. Syr’ya, 2013, no. 4, pp. 159–164.

    Google Scholar 

  51. Chumnanpaisont, N., Niamnuy, C., and Devahastin, S., Chem. Eng. Sci., 2014, vol. 116, pp. 442–451.

    Article  CAS  Google Scholar 

  52. Boldor, D., Kanitkar, A., Terigar, B.G., Leonardi, C., Lima, M., and Breitenbeck, G.A., Environ. Sci. Tech nol., 2010, vol. 44, no. 10, pp. 4019–4025.

    Article  CAS  Google Scholar 

  53. Ma, C.H., Liu, T.T., Yang, L., Zu, Y.G., Chen, X., Zhang, L., Zhang, Y., and Zhao, C., J. Chromatogr. A, 2011, vol. 1218, no. 48, pp. 8573–8580.

    Article  CAS  PubMed  Google Scholar 

  54. Brodie, G., Harris, G., Jacob, M.V., Sheehan, M., and Yin, L., J. Microwave Power Electromagn. Energy, 2011, vol. 45, no. 4, pp. 178–187.

    Google Scholar 

  55. Verma, S.C., Jain, C.L., Kumari, A., Padhi, M.M., and Devalla, R.B., J. Separation Sci., 2013, vol. 36, no. 7, pp. 1255–1262.

    Article  CAS  Google Scholar 

  56. Xia, E.Q., Wang, B.W., Xu, X.R., Zhu, L., Song, Y., and Li, H.B., Int. J. Mol. Sci., 2011, vol. 12, no. 8, pp. 5319–5329.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Puttarak, P. and Panichayupakaranant, P., Pharma ceut. Biol., 2012, vol. 50, no. 12, pp. 1508–1512.

    Article  CAS  Google Scholar 

  58. Chen, T., Sun, X., Xiao, W., Liu, X., Zhang, W., Ma, K., and Zhu, Y., Med. Chem. Res., 2010, vol. 19, no. 8, pp. 732–742.

    Article  CAS  Google Scholar 

  59. Liu, W., Zhou, C.L., Zhao, J., Chen, D., and Li, Q.H., Acta Scientiarum Polonorum, Technologia Alimentaria, 2014, vol. 13, no. 2, pp. 155–168.

    Article  CAS  PubMed  Google Scholar 

  60. Tang, B., Bi, W., Tian, M., and Row, K.H., J. Chro matogr. B: Anal. Technol. Biomed. Life Sci., 2012, vol. 904, pp. 1–21.

    Article  CAS  Google Scholar 

  61. Li, X.J., Yu, H.M., Gao, C., Zu, Y.G., Wang, W., Luo, M., Gu, C.B., Zhao, C.J., and Fu, Y.J., J. Sepa ration Sci., 2012, vol. 35, no. 24, pp. 3600–3608.

    Article  CAS  Google Scholar 

  62. Sun, S., Zhai, Y.J., Sun, Y., Zhang, Y.P., Liu, H., Wang, X.H., Yu, A.M., and Zhang, H.Q., Gaodeng Xuexiao Huaxue Xuebao/Chem. J. Chinese Univ., 2010, vol. 31, no. 3, pp. 468–472.

    CAS  Google Scholar 

  63. Liu, X., Wang, Y., Kong, J., Nie, C., and Lin, X., Anal. Methods, 2012, vol. 4, no. 4, pp. 1012–1018.

    Article  CAS  Google Scholar 

  64. Yuan, Y., Wang, Y., Xu, R., Huang, M., and Zeng, H., Analyst, 2011, vol. 136, no. 11, pp. 2294–2305.

    Article  CAS  PubMed  Google Scholar 

  65. Zeng, H., Wang, Y., Kong, J., Nie, C., and Yuan, Y., Talanta, 2010, vol. 83, no. 2, pp. 582–590.

    Article  CAS  PubMed  Google Scholar 

  66. Go-mez, N.E. and Witte, L., J. Chem. Ecol., 2001, vol. 27, no. 11, pp. 2351–2359.

    Article  CAS  Google Scholar 

  67. Chemat, F., Perino-Issartier, S., Petitcolas, E., and Fernandez, X., Anal. Bioanal. Chem., 2012, vol. 404, no. 3, pp. 679–682.

    Article  CAS  PubMed  Google Scholar 

  68. Stashenko, E.E., Jaramillo, B.E., and Martínez, J.R., J. Chromatogr. A, 2004, vol. 1025, no. 1, pp. 93–103.

    Article  CAS  PubMed  Google Scholar 

  69. Ferhat, M.A., Tigrine-Kordjani, N., Chemat, S., Meklati, B.Y., and Chemat, F., Chromatografia, 2007, vol. 65, nos. 3–4, pp. 217–222.

    Article  CAS  Google Scholar 

  70. Mircioaga, N. and Calinescu, I., Revista de Chimie, 2011, vol. 62, no. 11, pp. 1073–1076.

    CAS  Google Scholar 

  71. Jiang, C., Sun, Y., Zhu, X., Gao, Y., Wang, L., Wang, J., Wu, L., and Song, D., J. Separation Sci., 2010, vol. 33, nos. 17–18, pp. 2784–2790.

    Article  CAS  Google Scholar 

  72. Azar, P., Porgham-Daryasari, A., Saber-Tehrani, M., and Soleimani, M., Acta Chromatographica, 2012, vol. 24, no. 1, pp. 75–84.

    Article  CAS  Google Scholar 

  73. Ma, C.H., Yang, L., Zu, Y.G., and Liu, T.T., Food Chem., 2012, vol. 134, no. 4, pp. 2532–2539.

    Article  CAS  PubMed  Google Scholar 

  74. Boukhari, F., Tigrine-Kordjani, N., and Youcef Meklati, B., Helv. Chim. Acta, 2013, vol. 96, no. 6, pp. 1168–1175.

    Article  CAS  Google Scholar 

  75. Li, X.J., Wang, W., Luo, M., Li, C.Y., Zu, Y.G., Mu, P.S., and Fu, Y.J., Food Chem., 2012, vol. 133, no. 2, pp. 437–444.

    Article  CAS  PubMed  Google Scholar 

  76. Azar, P.A., Tehrani, M.S., Hosain, S.W., Khalilzadeh, M.A., and Zanousi, M.B.P., Asian J. Chem., 2012, vol. 24, no. 11, pp. 5388–5390.

    CAS  Google Scholar 

  77. Uysal, B., Sozmen, F., and Buyuktas, B.S., Natur. Product Commun., 2010, vol. 5, no. 1, pp. 111–114.

    CAS  Google Scholar 

  78. Bajpai, V.K., Sharma, A., Kim, S.H., and Baek, K.H., Food Technol. Biotechnol., 2013, vol. 51, no. 3, pp. 360–369.

    CAS  Google Scholar 

  79. Orio, L., Cravotto, G., Binello, A., Pignata, G., Nicola, S., and Chemat, F., J. Sci. Food Agricult., 2012, vol. 92, no. 15, pp. 3085–3090.

    Article  CAS  Google Scholar 

  80. Gholivand, M.B., Piryaei, M., and Abolghasemi, M.M., J. Separation Sci., 2013, vol. 36, no. 5, pp. 872–877.

    Article  CAS  Google Scholar 

  81. Benkaci-Ali, F., Akloul, R., Boukenouche, A., and Pauw, E.D., J. Essential Oil-Bearing Plants, 2013, vol. 16, no. 6, pp. 781–794.

    Article  CAS  Google Scholar 

  82. Périno-Issartier, S., Abert-Vian, M., Petitcolas, E., and Chemat, F., Chromatografia, 2010, vol. 72, nos. 3–4, pp. 347–350.

    Article  CAS  Google Scholar 

  83. Miletić, P., Grujić, R., and Marjanović-Balaban, Ž., Chem. Industry Chem. Eng. Quarterly, 2009, vol. 15, no. 1, pp. 37–39.

    Article  Google Scholar 

  84. Jiao, J., Gai, Q.Y., Fu, Y.J., Zu, Y.G., Luo, M., Zhao, C.J., and Li, C.Y., Separat. Purificat. Technol., 2013, vol. 107, pp. 228–237.

    Article  CAS  Google Scholar 

  85. Punegov, V.V., Kostromin, V.I., Fomina, M.G., Zainullin, V.G., Yushkova, E.A., Belykh, D.V., Chukicheva, I.Yu., and Zainullin, G.G., Khim. Rastit. Syr’ya, 2014, no. 1, pp. 125–130.

    Google Scholar 

  86. Zhang, G., Hu, M., He, L., Fu, P., Wang, L., and Zhou, J., Food Bioprod. Proc., 2013, vol. 91, no. 2, pp. 158–168.

    Article  CAS  Google Scholar 

  87. Peng, F., Peng, P., Xu, F., and Sun, R.C., Biotechnol. Adv., 2012, vol. 30, no. 4, pp. 879–903.

    Article  CAS  PubMed  Google Scholar 

  88. Tahmouzi, S., Int. J. Biol. Macromol., 2014, vol. 69, pp. 523–531.

    Article  CAS  PubMed  Google Scholar 

  89. Panthapulakkal, S., Pakharenko, V., and Sain, M., J. Polym. Environ., 2013, vol. 21, no. 4, pp. 917–929.

    Article  CAS  Google Scholar 

  90. Panthapulakkal, S. and Sain, M., Chem. Mater. Sci., 2013, vol. 1, no. 6, pp. 38–55.

    CAS  Google Scholar 

  91. Kuznetsova, S.A., Mikhailov, A.G., Skvortsova, G.P., Aleksandrova, N.B., and Lebedeva, A.B., Khim. Ras tit. Syr’ya, 2005, no. 1, pp. 53–58.

    Google Scholar 

  92. Seixas, F.L., Fukuda, D.L., Turbiani, F.R.B., Garcia, P.S., Petkowicz, C.L.D.O., Jagadevan, S., and Gimenes, M.L., Food Hydrocolloids, 2014, vol. 38, pp. 189–192.

    Article  CAS  Google Scholar 

  93. Xie, J.H., Xie, M.Y., Shen, M.Y., Nie, S.P., Li, C., and Wang, Y.X., J. Sci. Food Agricult., 2010, vol. 90, no. 8, pp. 1353–1360.

    Article  CAS  Google Scholar 

  94. Liu, Z., Dang, J., Wang, Q., Yu, M., Jiang, L., Mei, L., Shao, Y., and Tao, Y., Int. J. Biol. Macromol., 2013, vol. 61, pp. 127–134.

    Article  CAS  PubMed  Google Scholar 

  95. Monteil-Rivera, F., Huang, G.H., Paquet, L., Deschamps, S., Beaulieu, C., and Hawari, J., Bioresource Technol., 2012, vol. 104, pp. 775–782.

    Article  CAS  Google Scholar 

  96. Monteil-Rivera, F., Phuong, M., Ye, M., Halasz, A., and Hawari, J., Industr. Crops Products, 2013, vol. 41, no. 1, pp. 356–364.

    Article  CAS  Google Scholar 

  97. Smiglak, M., Pringle, J.M., Lu, X., Han, L., Zhang, S., Gao, H., MacFarlane, D.R., and Rogers, R.D., Chem. Commun., 2014, vol. 50, no. 66, pp. 9228–9250.

    Article  CAS  Google Scholar 

  98. Swatloski, R.P., Spear, S.K., Holbrey, J.D., and Rogers, R.D., J. Am. Chem. Soc., 2002, vol. 124, no. 18, pp. 4974–4975.

    Article  CAS  PubMed  Google Scholar 

  99. Muhammad, N., Man, Z., and Bustam, KhalilM.A., Eur. J. Wood Wood Products, 2012, vol. 70, nos. 1–3, pp. 125–133.

    Article  CAS  Google Scholar 

  100. Vadivambal, R. and Jayas, D.S., Biosyst. Engin., 2007, vol. 98, no. 1, pp. 1–16.

    Article  Google Scholar 

  101. Gasmalla, M.A.A., Yang, R., Amadou, I., and Hua, X., Tropical J. Pharmaceut. Res., 2014, vol. 13, no. 1, pp. 61–65.

    Article  CAS  Google Scholar 

  102. Hamrouni-Sellami, I., Rahali, F.Z., Rebey, I.B., Bourgou, S., Limam, F., and Marzouk, B., Food Bio proc. Technol., 2013, vol. 6, no. 3, pp. 806–817.

    Article  CAS  Google Scholar 

  103. Sellami, I.H., Rebey, I.B., Sriti, J., Rahali, F.Z., Limam, F., and Marzouk, B., Food Bioproc. Technol., 2012, vol. 5, no. 8, pp. 2978–2989.

    Article  CAS  Google Scholar 

  104. Pirbalouti, A.G., Mahdad, E., and Craker, L., Food Chem., 2013, vol. 141, no. 3, pp. 2440–2449.

    Article  CAS  Google Scholar 

  105. Lander, T.A., Dadonaite, B., and Monro, A.K., Taxon, 2013, vol. 62, no. 4, pp. 790–797.

    Article  Google Scholar 

  106. Mosqueda, M.R., Tabil, L.G., and Meda, V., J. Microwave Power Electromagnet. Energy (publica tion of the International Microwave Power Institute), 2013, vol. 47, no. 3, pp. 155–176.

    Google Scholar 

  107. Palade, P.A., Leuca, T., and Bandici, L., J. Electric. Electron. Engin., 2011, vol. 4, no. 1, pp. 153–156.

    Google Scholar 

  108. Hansson, L. and Antti, A.L., J. Mater. Proc. Technol., 2003, vol. 141, no. 1, pp. 41–50.

    Article  Google Scholar 

  109. Bartholme, M., Avramidis, G., Viol, W., and Kharazipour, A., Eur. J. Wood Wood Prod., 2009, vol. 67, no. 3, pp. 357–360.

    Article  CAS  Google Scholar 

  110. Torgovnikov, G., Microwave Wood Processing, 2010 (electronic resource). http://www.microwavewood processing.com/

  111. Torgovnikov, G. and Vinden, P., Forest Prod. J., 2010, vol. 60, no. 2, pp. 173–182.

    Article  Google Scholar 

  112. Bundhoo, Z.M.A., Mudhoo, A., and Mohee, R., Crit. Rev. Environ. Sci. Technol., 2013, vol. 43, no. 20, pp. 2140–2211.

    Article  CAS  Google Scholar 

  113. Miura, M., Kaga, H., Sakurai, A., Kakuchi, T., and Takahashi, K., J. Analyt. Appl. Pyrolysis, 2004, vol. 71, no. 1, pp. 187–199.

    Article  CAS  Google Scholar 

  114. Bannova, E.A., Kitaeva, N.K., Merkov, S.M., Muchkina, M.V., Zaloznaya, E.P., and Martynov, P.N., Sorbtsion. Khromatograf. Prots., 2013, vol. 13, no. 1, pp. 60–68.

    CAS  Google Scholar 

  115. Fu, Y., Wang, L., and Zhou, Z., 2011 International Conference on Energy, Environment and Sustainable Development, ICEESD 2011, Shanghai, 2012, pp. 2065–2070.

    Google Scholar 

  116. Nguyen, T.D., Moon, J.I., Song, J.H., and Kim, T.N., Korean J. Mater. Res., 2012, vol. 22, no. 6, pp. 321–327.

    Article  CAS  Google Scholar 

  117. Nóbrega, J.A., Pirola, C., Fialho, L.L., Rota, G., De Campos-Jordão, C.E.K.M.A., and Pollo, F., Talanta, 2012, vol. 98, pp. 272–276.

    Article  PubMed  CAS  Google Scholar 

  118. Tokaliğolu, Ş., Food Chem., 2012, vol. 134, no. 4, pp. 2504–2508.

    Article  CAS  Google Scholar 

  119. Liu, H.W., Qin, Z.H., Xie, H.L., and Cao, S., Spec trosc. Spectr. Anal., vol. 33, no. 1, pp. 224–227.

  120. Singh, R., Tiwari, S., Srivastava, M., and Shukla, A., Agricult. Engin. Intern.: CIGR J., 2014, vol. 16, no. 1, pp. 173–181.

    Google Scholar 

  121. Verma, P., Watanabe, T., and Honda, Y., Bioresource Technol., 2011, vol. 102, no. 4, pp. 3941–3945.

    Article  CAS  Google Scholar 

  122. Inan, H., Turkay, O., and Akkiris, C., Int. J. Global Warming, 2014, vol. 6, nos. 2–3, pp. 212–221.

    Article  Google Scholar 

  123. El-Zawawy, W.K., Ibrahim, M.M., Abdel-Fattah, Y.R., Soliman, N.A., and Mahmoud, M.M., Carbohydr. Polymers, 2011, vol. 84, no. 3, pp. 865–871.

    Article  CAS  Google Scholar 

  124. Kisurin, I.V., Arapov, K.A., Gushchin, P.A., Ivanov, E.V., and Vinokurov, V.A., Bashkir. Khim. Zh., 2010, no. 3, pp. 167–170.

    Google Scholar 

  125. Fan, S.P., Jiang, L.Q., Chia, C.H., Fang, Z., Zakaria, S., and Chee, K.L., Bioresource Technol., 2014, vol. 153, pp. 69–78.

    Article  CAS  Google Scholar 

  126. Katrakov, I.B., Bazarnova, N.G., Markin, V.I., Vorob’eva, E.A., and Strigunov, V.V., Novye dostizheniya v khimii i khimicheskoi tekhnologii rasti tel’nogo syr’ya: materialy V Vseros. konf. s mezhdunar. uchastiem (New Advances in Chemistry and Chemical Engineering of Plant Raw Materials: The 5th All-Rus sian Conference with International Participation), Barnaul, 2012, p. 113

    Google Scholar 

  127. Tsubaki, S., Ozaki, Y., and Azuma, J., J. Food Sci., 2010, vol. 75, no. 2, pp. C152–C159.

    Article  CAS  PubMed  Google Scholar 

  128. Singh, V., Kumar, P., and Sanghi, R., Progr. Polym. Sci. (Oxford), 2012, vol. 37, no. 2, pp. 340–364.

    Article  CAS  Google Scholar 

  129. Goetz, L.A., Sladky, J.P., and Ragauskas, A.J., Holz forschung, 2009, vol. 63, no. 4, pp. 414–417.

    CAS  Google Scholar 

  130. Dziak, J., Appl. Thermal Eng., 2008, vol. 28, no. 10, pp. 1189–1195.

    Article  CAS  Google Scholar 

  131. Wu, C.J., Zhao, C.S., Li, J., and Chen, K.F., 2011 International Conference on Chemical Engineering and Advanced Materials, Chem. Eng. Adv. Mater., 2011, vols. 236–238, pp. 1307–1312.

    Google Scholar 

  132. Chadlia, A. and Farouk, M.M., J. Appl. Polymer Sci., 2011, vol. 119, no. 6, pp. 3372–3381.

    Article  CAS  Google Scholar 

  133. Joly, N., Granet, R., and Krausz, P., J. Carbohydr. Chem., 2003, vol. 22, no. 1, pp. 47–55.

    Article  CAS  Google Scholar 

  134. DE Patent no. 19938501, 2001.

  135. Zhang, G.L., Zhang, L., Deng, H., and Sun, P., J. Chem. Technol. Biotechnol., 2011, vol. 86, no. 4, pp. 584–589.

    Article  CAS  Google Scholar 

  136. Peng, X.W., Ren, J.L., Zhong, L.X., Cao, X.F., and Sun, R.C., J. Agricult. Food Chem., 2011, vol. 59, no. 2, pp. 570–576.

    Article  CAS  Google Scholar 

  137. Shi, H., Yin, Y., and Jiao, S., J. Appl. Polymer Sci., 2014, vol. 131, no. 20.

    Google Scholar 

  138. Singh, A.V., Nath, L.K., Guha, M., and Kumar, R., Pharmacol. Pharmacy, 2011, vol. 2, no. 1, pp. 42–46.

    Article  CAS  Google Scholar 

  139. Guo, Y., Zhou, J., Wang, Y., Zhang, L., and Lin, X., Cellulose, 2010, vol. 17, no. 6, pp. 1115–1125.

    Article  CAS  Google Scholar 

  140. Rowell, R.M., Handbook of Wood Chemistry and Wood Composites, New York: CRC Press, 2005.

    Google Scholar 

  141. Hill, C.A.S., Wood Modification: Chemical, Thermal and Other Processes, John Wiley and Sons Ltd., 2006.

    Book  Google Scholar 

  142. Bazarnova, N.G., Katrakov, I.B., and Markin, V.I., Ross. Khim. Zh., 2004, vol. XLVIII, no. 3, pp. 108–115.

    Google Scholar 

  143. Bazarnova, N.G., Markin, V.I., Kolosov, P.V., Katrakov, I.B., Kalyuta, E.V., and Cheprasova, M.Yu., Ross. Khim. Zh., 2011, vol. 55, no. 1, pp. 4–9.

    CAS  Google Scholar 

  144. Brelid, L.P., Simonson, R., and Risman, P.O., Holzals Roh- und Werkstoff, 1999, vol. 57, no. 4, pp. 259–263.

    Article  Google Scholar 

  145. Brelid, P.L. and Simonson, R., Holzals Roh- und Werkstoff, 1999, vol. 57, no. 5, pp. 383–389.

    Article  CAS  Google Scholar 

  146. Brelid, P.L., Holzals Roh- und Werkstoff, 2002, vol. 60, no. 2, pp. 92–95.

    Article  CAS  Google Scholar 

  147. Markin, V.I., Bazarnova, H.G., and Galochkin, A.I., Khim. Rastit. Syr’ya, 1997, no. 1, pp. 26–28.

    Google Scholar 

  148. RF Patent no. 2130947, 1999.

  149. Markin, V.I., Bazarnova, N.G., and Galochkin, A.I., Plast. Massy, 1998, no. 7, pp. 31–34.

    Google Scholar 

  150. Markin, V.I., Karboksimetilirovanie rastitel’nogo syr’ya. Teoriya i praktika (Carboxymethylation of Plant Raw Materials. Theory and Practice), Barnaul, 2010.

    Google Scholar 

  151. Markin, V.I., Galochkin, A.I., Bazarnova, N.G., and Krest’yannikova, N.S., Khim. Interesakh Ustoich. Raz vit., 1997, vol. 5, no. 5, pp. 523–528.

    Google Scholar 

  152. Bazarnova, N.G., Markin, V.I., Galochkin, A.I., and Tokareva, I.V., Khim. Interesakh Ustoich. Razvit., 1998, no. 6, pp. 223–227.

    CAS  Google Scholar 

  153. RF Patent no. 2131884, 1999.

  154. RF Patent no. 2135517, 1999.

  155. RF Patent no. 2393169, 2010.

  156. Cheprasova, M.Yu., Mikhailidi, A.M., Kotolevskii, I.V., Markin, V.I., and Bazarnova, N.G., Novye dostizheniya v khimii i khimicheskoi tekhnologii rastitel’nogo syr’ya: mater. IV Vseros. konf. (New Advances in Chemistry and Chemical Engineering Plant Raw Materials: Materials of the 4th All-Russian Conference), Barnaul, 2009, vol. 1, pp. 100–101.

    Google Scholar 

  157. Cheprasova, M.Yu., Markin, V.I., Bazarnova, N.G., and Kotalevskii, I.V., Khim. Rastit. Syr’ya, 2011, no. 1, pp. 77–80.

    Google Scholar 

  158. Mikhailidi, A.M. and Markin, V.I., Novye dostizheniya v khimii i khimicheskoi tekhnologii rastitel’nogo syr’ya: mater. III Vseros. konf. (New Advances in Chemistry and Chemical Engineering Plant Raw Materials: Materials of the 3rd All-Russian Conference), Barnaul, 2007, pp. 90–91.

    Google Scholar 

  159. Cheprasova, M.Yu., Carboxymethylation of plant raw materials under microwave irradiation, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Krasnoyarsk, 2012.

    Google Scholar 

  160. Cheprasova, M.Y., Markin, V.I., Bazarnova, N.G., and Kotalevskii, I.V., Russ. J. Bioorg. Chem., 2012, vol. 38, no. 7, pp. 726–729.

    Article  CAS  Google Scholar 

  161. Markin, V.I., The study wood carboxymethylation by the suspension method, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Krasnoyarsk, 1999.

    Google Scholar 

  162. Cheprasova, M.Yu., Markin, V.I., Bazarnova, N.G., Kalyuta, E.V., and Morozova, V.S., Khim. Rastit. Syr’ya, 2011, no. 2, pp. 87–90.

    Google Scholar 

  163. Markin, V.I., Bazarnova, N.G., Kolosov, P.V., Cheprasova, M.Yu., and Moskova, Yu.S., Khim. Rastit. Syr’ya, 2012, no. 4, pp. 55–60.

    Google Scholar 

  164. Markin, V.I., Bazarnova, N.G., Kolosov, P.V., Cheprasova, M.Y., and Moskova, Y.S., Russ. J. Bioorg. Chem., 2013, vol. 39, no. 7, pp. 699–703.

    Article  CAS  Google Scholar 

  165. Markin, V.I., Cheprasova, M.Yu., Bazarnova, N.G., and Frolova, E.O., Khim. Rastit. Syr’ya, 2013, no. 2, pp. 69–72.

    Google Scholar 

  166. Markin, V.I., Cheprasova, M.Y., Bazarnova, N.G., and Frolova, E.O., Russ. J. Bioorg. Chem., 2014, vol. 40, no. 7, pp. 733–736.

    Article  CAS  Google Scholar 

  167. Cheprasova, M.Yu., Markin, V.I., Bazarnova, N.G., and Kalyuta, E.V., Karboksimetilirovanie tsellyulozy v sostave rastitel’nogo syr’ya pod vozdeistviem mikrovol novogo izlucheniya (Carboxymethylation of Cellulose in Plant Raw Materials Under Microwave Irradia tion), Barnaul, 2013.

    Google Scholar 

  168. Cheprasova, M.Yu. and Markin, V.I., Karboksimeti lirovanie rastitel’nogo syr’ya pod vozdeistviem mikrovol novogo izlucheniia (Carboxymethylation of Plant Raw Materials Under Microwave Irradiation), Barnaul, 2014.

    Google Scholar 

  169. Sutradhar, P., Debnath, N., and Saha, M., Adv. Man ufact., 2013, vol. 1, no. 4, pp. 357–361.

    Article  CAS  Google Scholar 

  170. Bhuvanasree, S.R., Harini, D., Rajaram, A., and Rajaram, R., Spectrochimica acta, Part A: Mol. Biomol. Spectrosc., 2013, vol. 106, pp. 190–196.

    Article  CAS  Google Scholar 

  171. Zheng, Z., Pan, H., Huang, Y., Chung, Y.H., Zhang, X., and Feng, H., Open Mater. Sci. J., 2011, vol. 5, pp. 1–8.

    Article  CAS  Google Scholar 

  172. Gabriel, C., Gabriel, S., Grant, E.H., Halstead, B.S.J., Michael, P., and Mingos, D., Chem. Soc. Rev., 1998, vol. 27, no. 3, pp. 213–223.

    Article  CAS  Google Scholar 

  173. Hessel, V., Cravotto, G., Fitzpatrick, P., Patil, B.S., Lang, J., and Bonrath, W., Chem. Eng. Processing: Process Intensificat., 2013, vol. 71, pp. 19–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Markin.

Additional information

Original Russian Text © V.I. Markin, M.Yu. Cheprasova, N.G. Bazarnova, 2014, published in Khimiya Rastitel’nogo Syr’ya, 2014, No. 4, pp. 21–42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markin, V.I., Cheprasova, M.Y. & Bazarnova, N.G. General areas of the use of a microwave radiation for processing of plant raw materials (review). Russ J Bioorg Chem 41, 686–699 (2015). https://doi.org/10.1134/S1068162015070110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162015070110

Keywords

Navigation