Skip to main content
Log in

Symmetry and stability of nanotubes based on titanium dioxide

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The process of rolling a monolayer of bulk crystal with biperiodical planar lattice to the nanotube was analyzed. It was shown by an example of the carbon nanotubes how the tube symmetry can be revealed through the analysis of symmetry of graphene layers (the layer group with a hexagonal planar lattice) and its changes at the rolling to form the tube. The developed approach can be used to analyze the symmetry of any nanotube. A computer program we developed is discussed that allows to determine the nanotube symmetry using the data on the symmetry and coordinates of the atoms in the nanolayer and get the coordinates of the atoms in the unit cell of the nanotube which can be used for the further quantum-chemical calculations. The method and results of ab initio calculations of the titanium dioxide monolayer stability in the LCAO basis optimized for the bulk crystal, using the hybrid exchange-correlation potential PBE0 are presented. Symmetry properties of nanotubes obtained by rolling the three- and six-plane monolayers (101) and (001) of anatase are discussed. Atomic and electronic structure of TiO2 nanotubes found by geometry optimization is analyzed. It is shown that titanium dioxide nanotubes based on the three-plane monolayers with hexagonal and square lattice are approximately of the same stability. The data on the stability of nanotubes are essential for the synthesis of new nanomaterials based on titanium dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zakharova, G.S., Volkov, V.L., Ivanovskaya, V.V., and Ivanovskii, A.L., Nanotrubki i rodstvennye nanostruktury oksidov metallov (Nanotubes and Related Nanostructures of Metal Oxides), Yekaterinburg: Inst. Solid State Chem., 2005.

    Google Scholar 

  2. D’yachkov, P.N., Uglerodnye nanotrubki. Stroenie, svoistva, primeneniya (Carbon Nanotubes: Structure, Properties, and Application), Moscow: Binom, 2006.

    Google Scholar 

  3. International Tables for Crystallography, Subperiodic Groups, Kopsky, V. and Litvin, D.B., Eds., Kluwer Academic Publishers, 2002, vol. E.

  4. Damnjanović, M., Nicolić, B., and Milošević, B., Phys. Rev., B, 2007, vol. 75, p. 033403.

    Article  Google Scholar 

  5. Damnjanović, M. and Milošević, I., Line Groups in Physics: Theory and Applications to Nanotubes and Polymers. Lecture Notes in Physics, Berlin, Heidelberg: Springer Verlag, 2010, vol. 801, p. 180.

    Book  Google Scholar 

  6. Damnjanović, M., Milošević, I., Vucović, T., and Sredanović, R., Phys. Rev., B, 1999, vol. 60, p. 2728.

    Article  Google Scholar 

  7. Python programming language. Python Software Foundation, 2009, http://www.python.org .

  8. Bahn, S.R. and Jacobsen, K.W., Comput. Sci. Eng., 2002, vol. 4, p. 56.

    Article  CAS  Google Scholar 

  9. Togo, A., Oba, F., and Tanaka, I., Phys. Rev., B, 2008, vol. 78, p. 134106-1–9.

    Article  Google Scholar 

  10. Stokes, H.T., Hatch, D.M., and Campbell, B.J., ISOTROPY User’s Manual, Provo, UT, USA, 2007; http://stokes.byu.edu/isotropy.html

  11. Dovesi, R., Saunders, V.R., Roetti, C., Orlando, R., Zicovich-Wilson, C.M., Pascale, F., Civalleri, B., Doll, K., Harrison, N.M., Bush, I.J., D’Arco Ph., and Llunell, M., CRYSTAL06(09) User Manual, Turin: Univ. of Turin, 2010, http://www.crystal.unito.it .

    Google Scholar 

  12. Bandura, A.V. and Evarestov, R.A., Surf. Sci., 2009, vol. 603, p. L117.

    Article  CAS  Google Scholar 

  13. Damnjanović, M., Milošević, I., Vucović, T., Dobardzić, E., and NikolliĆ, B., Phys. Rev., B, 2004, vol. 69, p. 153401

    Article  Google Scholar 

  14. Ernzerhof, M. and Scuseria, G.E., J. Chem. Phys., 1999, vol. 110, p. 5029.

    Article  CAS  Google Scholar 

  15. D’yachkov, P.N., and Makaev, D.V., Phys. Rev., B, 2007, vol. 76, p. 195411.

    Article  Google Scholar 

  16. Evarestov, R.A., Quantum Chemistry of Solids. The LCAO First Principles Treatment of Crystals. Springer Series in Solid State Sciences, Berlin: Springer Verlag, 2007, vol. 153, p. 558.

    Google Scholar 

  17. Hurley, M.M., Pacios, L.F., Christiansen, P.A., Ross, R.B., and Ermler, W.C., J. Chem. Phys., 1986, vol. 84, p. 6840.

    Article  CAS  Google Scholar 

  18. Schäfer, A., Huber, C., and Ahlrichs, R., J. Chem. Phys., 1994, vol. 100, p. 5829.

    Article  Google Scholar 

  19. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical Recipes in Fortran 77, 2nd ed., Cambidge Univ. Press, Cambridge, MA, 1997.

    Google Scholar 

  20. Evarestov, R.A., Panin, A.I., Bandura, A.V., and Losev, M.V., J. Phys. Conf. Ser., 2008, vol. 117, p. 012015.

    Article  Google Scholar 

  21. Monkhorst, H.J. and Pack, J.D., Phys Rev., B, 1976, vol. 13, p. 5188

    Article  Google Scholar 

  22. Peng, H., Phys. Lett., A, 2008, vol. 372, p. 1527.

    Article  CAS  Google Scholar 

  23. Labat, F., Baranek, P., Domain, C., Minot, C., and Adamo, C., J. Chem. Phys., 2007, vol. 126, p. 154703.

    Article  Google Scholar 

  24. Maiyalagan, T., Viswanathan, B., and Varadaraju, U.V., Bull. Mater. Sci., 2006, vol. 29, p. 705.

    CAS  Google Scholar 

  25. Labat, F., Baranek, P., and Adamo, C., J. Chem. Theory Comput., 2008, vol. 4, p. 341.

    Article  CAS  Google Scholar 

  26. Enyashin, A.N. and Seifert, G., Phys. Stat. Sol., B, 2005, vol. 242, p. 1361.

    Article  CAS  Google Scholar 

  27. Ma, R., Bando, Y. and Sasaki, T., Chem. Phys. Lett., 2003, vol. 380, p. 577.

    Article  CAS  Google Scholar 

  28. Vittadini, A., Casarin, M., and Selloni, A., Theor. Chem. Acc., 2007, vol. 117, p. 663.

    Article  CAS  Google Scholar 

  29. Lazzeri, M., Vittadini, A., and Selloni, A., Phys. Rev., B, 2001, vol. 63, p. 155409.

    Article  Google Scholar 

  30. Vittadini, A. and Casarin, M., Theor. Chem. Acc., 2008, vol. 120, p. 551.

    Article  CAS  Google Scholar 

  31. He, T., Zhao, M., Zhang, X., Zhang, H., Wang, Z., Xi, Z., Liu, X., Yan, S. Xia, Y., and Mei, L., J. Phys. Chem., C, 2009, vol. 113, p. 13610.

    Article  CAS  Google Scholar 

  32. Szieberth, D., Ferrari, A.M., Noel, Y., and Ferrabone, M., Nanoscale, 2010, vol. 2, p. 81.

    Article  CAS  Google Scholar 

  33. Wang, J., Wang, L., Ma, L., Zhao, J., Wang, B., and Wang, G., Physica, E, 2009, vol. 41, p. 838

    Article  CAS  Google Scholar 

  34. Liu, Z., Zhang, Q., Qin, L.C., Solid State Comm., 2007, vol. 141, p. 168.

    Article  CAS  Google Scholar 

  35. Lin, F., Zhou, G., Li, Z., Li, J., Wu, J., and Duan, W., Chem. Phys. Lett., 2009, vol. 475, p. 82

    Article  CAS  Google Scholar 

  36. Evarestov, R.A., Bandura, A.V. Losev, M.V., Piskunov, S., and Zhukovskii, Yu.F., Physica, E, 2010 (in press).

  37. Enyashin, A.N., Gemming, S., and Seifert, G., Simulation of Inorganic Nanotubes, Materials for Tomorrow. Theory, Experiments and Modelling, Springer Series in Materials Science, 2007, vol. 93, 2007, p. 33.

    CAS  Google Scholar 

  38. Ivanovskaya, V.V., Enyashin, A.N., and Ivanovskii, A.L., Mendeleev Commun., 2003, vol. 13, p. 5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Evarestov.

Additional information

Original Russian Text © R.A. Evarestov, A.B. Bandura, M.V. Losev, 2010, published in Zhurnal Obshchei Khimii, 2010, Vol. 80, No. 6, pp. 982–998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evarestov, R.A., Bandura, A.B. & Losev, M.V. Symmetry and stability of nanotubes based on titanium dioxide. Russ J Gen Chem 80, 1152–1167 (2010). https://doi.org/10.1134/S1070363210060198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363210060198

Keywords

Navigation