Skip to main content
Log in

Methanol Dehydrogenation to Methyl Formate Catalyzed by Cu/SiO2 Catalysts: Impact of Precipitation Procedure and Calcination Temperature

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Considered three options for the synthesis of a catalyst by the precipitation method, the Cu/SiO2 catalysts prepared by varying the precipitation procedure and calcination temperature for the dehydrogenation of methanol was investigated. When the CuO/SiO2 catalyst precursors were prepared by the addition of a copper nitrate aqueous solution into an ammonia aqueous solution (reverse precipitation) and co-current flow addition of both aqueous solutions, after reduction with gaseous hydrogen, small-sized metallic copper nanocrystallites were formed in the reduced Cu/SiO2 catalysts as compared to those prepared by the addition of an ammonia aqueous solution into a copper nitrate aqueous solution (direct precipitation). The reduced Cu/SiO2 catalysts prepared by the reverse precipitation method with relatively lower acidity and basicity exhibited higher catalytic activity for the formation of methyl formate in methanol dehydrogenation. The reduced Cu/SiO2 catalysts prepared by the calcination at a lower temperature exhibited higher catalytic activity for the formation of methyl formate. The surface metallic Cu0 and Cu+ species catalyzed the methanol dehydrogenation to methyl formate, meanwhile the surface Cu+ cations enhanced the decomposition of the resultant methyl formate to CO and H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1.
Fig. 2.
Scheme 3.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Huang, C., Wen, J., Sun, Y., Zhang, M., Bao, Y., Zhang, Y., Liang, L., Fu, M., Wu, J., Ye, D., and Chen, L., Chem. Eng. J., 2019, vol. 374, pp. 221–230. https://doi.org/10.1016/j.cej.2019.05.123

    Article  CAS  Google Scholar 

  2. Du, H., Ma, X., Yan, P., Jiang, M., Zhao, Z., and Zhang, Z.C., Fuel Process. Technol., 2019, vol. 193, pp. 221–231. https://doi.org/10.1016/j.fuproc.2019.05.003

    Article  CAS  Google Scholar 

  3. Zhang, D., Yin, H., Ge, C., Xue, J., Jiang, T., Yu, L., and Shen, Y., J. Ind. Eng. Chem., 2009, vol. 15, pp. 537–543. https://doi.org/10.1016/j.jiec.2009.01.010

    Article  CAS  Google Scholar 

  4. Zhang, D., Yin, H., Xue, J., Ge, C., Jiang, T., Yu, L., and Shen, Y., Ind. Eng. Chem. Res., 2009, vol. 48, pp. 11220–11224. https://doi.org/10.1021/ie9013875

    Article  CAS  Google Scholar 

  5. Ferrah, D., Haines, A.R., Galhenage, R.P., Bruce, J.P., Babore, A.D., Hunt, A., Waluyo, I., and Hemminger, J.C., ACS Catal., 2019, vol. 9, pp. 6783−6802. https://doi.org/10.1021/acscatal.9b01419

    Article  CAS  Google Scholar 

  6. Lu, Z., Yin, H., Wang, A., Hu, J., Xue, W., Yin, H., and Liu, S., J. Ind. Eng. Chem., 2016, vol. 37, pp. 208–215. https://doi.org/10.1016/j.jiec.2016.03.028

    Article  CAS  Google Scholar 

  7. Yang, H., Chen, Y., Cui, X., Wang, G., Cen, Y., Deng, T., Yan, W., Gao, J., Zhu, S., Olsbye, U., Wang, J., and Fan, W., Angew. Chem., 2018, vol. 130, pp. 1854–1858. https://doi.org/10.1002/anie.201710605

    Article  CAS  Google Scholar 

  8. Salaeva, A.A., Salaev, M.A., Vodyankina, O.V., and Mamontov, G.V., Appl. Catal. A., 2019, vol. 581, pp. 82–90. https://doi.org/10.1016/j.apcata.2019.05.018

    Article  CAS  Google Scholar 

  9. Yin, H., Yin, H., Wang, A., Shen, L., Liu, Y., and Zheng, Y., J. Nanosci. Nanotechnol., 2017, vol. 17, pp. 1255–1266. https://doi.org/10.1166/jnn.2017.12573

    Article  CAS  PubMed  Google Scholar 

  10. Park, J., Cho, J., Lee, Y., Park, M.J., and Lee, W.B., Ind. Eng. Chem. Res., 2019, vol. 58, pp. 8663–8673. https://doi.org/10.1021/acs.iecr.9b01254

    Article  CAS  Google Scholar 

  11. Sitthisa, S., Sooknoi, T., Ma, Y., Balbuena, P.B., and Resasco, D.E., J. Catal., 2011, vol. 277, pp. 1–13. https://doi.org/10.1016/j.jcat.2010.10.005

    Article  CAS  Google Scholar 

  12. Indu, B., Ernst, W.R., and Gelbaum, L.T., Ind. Eng. Chem. Res., 1993, vol. 32, pp. 981–985. https://doi.org/10.1021/ie00017a031

    Article  CAS  Google Scholar 

  13. He, L., Liu, H., Xiao, C., and Kou, Y., Green Chem., 2008, vol. 10, pp. 619–622. https://doi.org/10.1039/B804459G

    Article  CAS  Google Scholar 

  14. Ai, M., J. Catal., 1982, vol. 77, pp. 279–288. https://doi.org/10.1016/0021-9517(82)90168-3

    Article  CAS  Google Scholar 

  15. Shelepova, E.V., Ilina, L.Y., and Vedyagin, A.A., Catal. Today, 2019, vol. 331, pp. 35–42. https://doi.org/10.1016/j.cattod.2017.11.023

    Article  CAS  Google Scholar 

  16. Matsuda, T., Yogo, K., Pantawong, C., and Kikuchi, E., Appl. Catal. A., 1995, vol. 126, pp. 177–186. https://doi.org/10.1016/0926-860X(95)00041-0

    Article  CAS  Google Scholar 

  17. Lu, Z., Gao, D., Yin, H., Wang, A., and Liu, S., J. Ind. Eng. Chem., 2015, vol. 31, pp. 301–308. https://doi.org/10.1016/j.jiec.2015.07.002

    Article  CAS  Google Scholar 

  18. Shelepova, E.V., Vedyagin, A.A., Ilina, L.Y., Nizovskii, A.I., and Tsyrulnikov, P.G., Appl. Surf. Sci., 2017, vol. 409, pp. 291–295. https://doi.org/10.1016/j.apsusc.2017.02.220

    Article  CAS  Google Scholar 

  19. Zhang, R., Sun, Y., and Peng, S., Fuel, 2002, vol. 81, pp. 1619–1624. https://doi.org/10.1016/S0016-2361(02)00085-6

    Article  CAS  Google Scholar 

  20. Minyukova, T.P., Simentsova, I.I., Khasin, A.V., Shtertser, N.V., Baronskaya, N.A., Khassin, A.A., and Yurieva, T.M., Appl. Catal. A., 2002, vol. 237, pp. 171–180. https://doi.org/10.1016/S0926-860X(02)00328-9

    Article  CAS  Google Scholar 

  21. Guerreiro, E.D., Gorriz, O.F., Larsen, G., and Arrúa, L.A., Appl. Catal. A., 2000, vol. 204, pp. 33–48. https://doi.org/10.1016/S0926-860X(00)00507-X

    Article  CAS  Google Scholar 

  22. Guo, Y., Lu, G., Mo, X., and Wang, Y., Catal. Lett., 2005, vol. 99, pp. 105–108. https://doi.org/10.1007/s10562-004-0783-3

    Article  CAS  Google Scholar 

  23. Kipnis, M.A., Volnina, E.A., Belostotskii, I.A., and Levin, I.S., Kinet. Catal., 2020, vol. 61, pp. 145‒154. https://doi.org/10.1134/S0023158420010024

    Article  CAS  Google Scholar 

  24. Zhong, J., Yang, X., Wu, Z., Liang, B., Huang, Y., and Zhang, T., Chem. Soc. Rev., 2020, vol. 49, pp. 1385–1413. https://doi.org/10.1039/C9CS00614A

    Article  CAS  PubMed  Google Scholar 

  25. Minyukova, T.P., Khasin, A.V., Khassin, A.A., Shtertser, N.V., Simentsova, I.I., and Yurieva, T.M., Catal. Ind., 2016, vol. 8, pp. 293‒299. https://doi.org/10.1134/S2070050416040073

    Article  Google Scholar 

  26. Xue, W., Yin, H., Lu, Z., Wang, A., Liu, S., and Shen, L., J. Nanosci. Nanotechnol., 2018, vol. 18, pp. 3362–3372. https://doi.org/10.1166/jnn.2018.14706

    Article  CAS  PubMed  Google Scholar 

  27. Yin, H., Zhang, C., Yin, H., Gao, D., Shen, L., and Wang, A., Chem. Eng. J., 2016, vol. 288, pp. 332–343. https://doi.org/10.1016/j.cej.2015.12.010

    Article  CAS  Google Scholar 

  28. Wang, A., Zhang, M., Yin, H., Liu, S., Liu, M., and Hu, T., RSC Adv., 2018, vol. 8, pp. 19317–19325. https://doi.org/10.1039/C8RA03125H

    Article  CAS  Google Scholar 

  29. Dai, W.L., Sun, Q., Deng, J.F., Wu, D., and Sun, Y.H., Appl. Surf. Sci., 2001, vol. 177, pp. 172–179. https://doi.org/10.1016/S0169-4332(01)00229-X

    Article  CAS  Google Scholar 

  30. Aravinda, C.L., Bera, P., Jayaram, V., Sharma, A.K., and Mayanna, S.M., Mater. Res. Bull., 2002, vol. 37, pp. 397–405. https://doi.org/10.1016/S0025-5408(01)00821-2

    Article  CAS  Google Scholar 

  31. Deutsch, K.L., and Shanks, B.H., Appl. Catal. A., 2012, vol. 447–448, pp. 144–150. https://doi.org/10.1016/j.apcata.2012.09.047

    Article  CAS  Google Scholar 

  32. Sun, K., Lu, W., Qiu, F., Liu, S., and Xu, X., Appl. Catal. A., 2003, vol. 252, pp. 243–249. https://doi.org/10.1016/S0926-860X(03)00466-6

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Jiangsu Science and Technology Department, China (FZ20180919).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. Yin.

Ethics declarations

The authors state that they have no conflict of interest to be disclosed in the present communication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A.L., Ye, C.L., Jia, X.Y. et al. Methanol Dehydrogenation to Methyl Formate Catalyzed by Cu/SiO2 Catalysts: Impact of Precipitation Procedure and Calcination Temperature. Russ J Appl Chem 94, 1302–1312 (2021). https://doi.org/10.1134/S1070427221090135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221090135

Keywords:

Navigation