Skip to main content
Log in

Effect of colloids on transfer of radionuclides by subsurface water

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The fluid transfer of radionuclides in the geologic medium is considered under conditions when radionuclides are contained in fluids not only as solutes but also as colloids. The effect of colloidal transport of radionuclides on the rate of spreading of radioactive contamination in an underground medium is estimated, with assessment of this effect in mathematical models describing the transport of radionuclides by subsurface water. For this purpose, the exchange of radionuclides between subsurface water, colloid, and an immobile solid phase is considered, taking into account the precipitation of colloidal particles on both the immobile solid phase and other colloidal particles and their recurrent mobilization into the liquid phase. It is noted that, in real colloidal transfer, the heterogeneity of the geologic medium and colloidal particles in subsurface water is of great importance. The known models of colloidal transfer of radionuclides are evaluated on the basis of the analysis performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abdel-Salam and C. V. Chrysikopoulos, “Analysis of a Model for Contaminant Transport in Fractured Media in Presence of Colloids,” J. Hydrology 165(1–4), 261–281 (1995).

    Article  Google Scholar 

  2. Z. Adamczyk and T. G. M. Van de Ven, “Deposition of Particles under External Forces in Laminar Flow through Parallel-Plate and Cylindrical Channels,” J. Colloid Interface Sci. 80(2), 320–356 (1981).

    Article  Google Scholar 

  3. P. L. Airey, “Radionuclide Migration around Uranium Ore Bodies in the Alligator Rivers Region of the Northern Territory of Australia-Analogue of Radioactive Waste Repositories- a Review,” Chem. Geol. 55(3/4), 255–268 (1986).

    Article  Google Scholar 

  4. A. I. Aleksakhin, A. V. Glagolev, E. G. Drozhko, et al., Basin 9: Repository of Fluid Radioactive Wastes and Its Effect on the Geologic Medium (Rosatom, Moscow, 2007) [in Russian].

    Google Scholar 

  5. M. Amme, L. Aldave de las Heras, M. Betti, et al., “Effects of Colloidal and Dissolved Silica on the Dissolution of UO2 Nuclear Fuel in Groundwater Leaching Tests,” J. Radioanalytical Nuclear Chem. 261(2), 327–336 (2004).

    Article  Google Scholar 

  6. C. Amrhein, P. A. Mosher, and J. E. Strong, “Colloid-Assisted Transport of Trace Metals in Roadside Soils Receiving Deicing Salts,” J. Soil Sci. Soc. Am. 57(5), 1212–1217 (1993).

    Google Scholar 

  7. R. Artinger, B. Kienzler, W. Schussler, et al., “Effects of Humic Substances on the 241Am Migration in a Sandy Aquifer: Column Experiments with Gorleben Ground-Water/Sediment Systems,” J. Contaminant Hydrology 35, 261–275 (1998).

    Article  Google Scholar 

  8. R. Artinger, C. M. Marquardt, J. I. Kim, et al., “Humic Colloid-Borne Np Migration: Influence of the Oxidation State,” Acta 88(9–11), 609–612 (2000).

    Google Scholar 

  9. R. Artinger, W. Schuessler, F. Scherbaum, et al., “241Am Migration in Sandy Aquifer Studied by Long-Term Column Experiments,” Environ. Sci. Technol. 36(22), 4818–4823 (2002).

    Article  Google Scholar 

  10. J. K. Bates, J. P. Bradley, A. Teetsov, et al., “Colloid Formation during Waste Form Reaction: Implication for Nuclear Waste Disposal,” Science 256, 649–651 (1992).

    Article  Google Scholar 

  11. P. Beneš, M. Jurák, and M. Černik, “Factors Affecting Interaction of Radiocobalt with River Sediments. II. Composition and Concentration of Sediments, Temperature,” J. Radioanalytical Nuclear Chem. 132(2), 225–239.

  12. P. Beneš, M. Jurák, and M. Kuncová, “Factors Affecting Interaction of Radiocobalt with River Sediments. I. pH and Composition and Contact Time,” J. Radioanalytical Nucl. Chem. 132(2), 209–223.

  13. Z. Borovec, “The Adsorption of Uranyl Species by Fine Clay,” Chem. Geol. 32(1/2), 45–48 (1981).

    Article  Google Scholar 

  14. B. D. Bowen and N. Epstein, “Fine Particles Deposition in Smooth Parallel-Plate Channels,” J. Colloid Interface Sci. 72(1), 81–97 (1979).

    Article  Google Scholar 

  15. B. D. Bowen, S. Levine, and N. Epstein, “Fine Particle Deposition in Laminar Flow through Parallel-Plate and Cylindrical Channels,” J. Colloid Interface Sci. 54(3), 375–390 (1976).

    Article  Google Scholar 

  16. E. C. Buck and J. K. Bates, “Microanalysis of Colloids and Suspended Particles from Nuclear Waste Glass Alteration,” Appl. Geochem. 14, 635–659 (1999).

    Article  Google Scholar 

  17. J. Buffle, K. J. Wilkinson, S. Stoll, et al., “A Generalized Description of Aquatic Colloidal Interactions: The Three- Colloidal Component Approach,” Environ. Sci. Technol. 32(19), 2887–2899 (1998).

    Article  Google Scholar 

  18. J. G. Catalano and G. E. Brown, “Uranyl Adsorption onto Montmorillonite: Evaluation of Binding Sites and Carbonate Complication,” Geochim. Cosmochim. Acta 69(12), 2999–3005 (2005).

    Article  Google Scholar 

  19. D. R. Champ and J. Schroeter, “Bacterial Transport in Fractured Rock: A Field-Scale Tracer Test at the Chalk River Nuclear Laboratories,” Water Sci. Technology 20(11/12), 81–87 (1988).

    Google Scholar 

  20. D. R. Champ, W. F. Merritt, and J. L. Young, “Potential for the Rapid Transport of Plutonium in Groundwater As Demonstrated by Core Column Studies,” in Proceedings of International Symposium on Scientific Basis for Radioactive Waste Management (Elsevier, New York, 1982), pp. 745–754.

    Google Scholar 

  21. J. Y. Chen, C. H. Ko, S. Bhattacharjee, et al., “Role of Spatial Distribution of Porous Medium Surface Charge Heterogeneity in Colloid Transport,” Colloids and Surfaces A. 191(1/2), 3–15 (2001).

    Article  Google Scholar 

  22. J. Choi, “The High-Level Waste Disposal Technology Development Program in Korea,” in International Spent Nuclear Fuel Storage Facility (Korea Atomic Energy Research Institute, 2005; Russian Acad. Sci., Moscow, 2005), pp. 73–84.

  23. P. Ciffroy, J.-M. Garnier, and M. K. Pham, “Kinetics of the Adsorption and Desorption of Radionuclides of Co, Mn, Cs, Fe, Ag and Cd in Fresh Water Systems: Experimental and Modeling Approaches,” J. Environ. Radioactivity 55(1), 71–91 (2001).

    Article  Google Scholar 

  24. M. Y. Corapcyoglu, S. Jiang, and S.-H. Kim, “Comparison of Kinetic and Hybrid-Equilibrium Models Simulating Colloid-Facilitated Contaminant Transport in Porous Media,” Trans. Porous Media 36(3), 373–390 (1999).

    Article  Google Scholar 

  25. J. A. Davis, “Adsorption of Natural Dissolved Organic Matter at the Oxide/Water Interface,” Geochim. Cosmochim. Acta 46(11), 2381–2393 (1982).

    Article  Google Scholar 

  26. J. A. Davis and R. Gloor, “Adsorption of Dissolved Organics in Lake Water by Aluminum Oxide: Effect of Molecular Weight,” Environ. Sci. Technol. 15(10), 1223–1229 (1981).

    Article  Google Scholar 

  27. A. J. Dent, J. D. F. Ramsay, and S. W. Swanton, “An EXAFS Study of Uranyl Ion in Solution and Sorbed onto Silica and Montmorillonite Clay Colloids,” J. Colloid Interface Sci. 150(1), 45–60 (1992).

    Article  Google Scholar 

  28. F. M. Dunnivant, P. M. Jardine, D. L. Taylor, et al., “Cotransport of Cadmium and Hexachlorobiphenyl by Dissolved Organic Carbon through Columns Containing Aquifer Material,” Environ. Sci. Technol. 25(2), 360–368 (1992).

    Article  Google Scholar 

  29. W. L. Ebert and J. K. Bates, “A Comparison of Glass Reaction at High and Low Glass Surface/Solution Volume,” Nucl. Technol. 104(12), 372–384 (1993).

    Google Scholar 

  30. G. Echevarria, M. I. Sheppard, and J. Morel, “Effect of pH on the Sorption of Uranium in Soils,” J. Environ. Radioactivity 53(2), 257–264 (2001).

    Article  Google Scholar 

  31. G. G. Eichholz, B. G. Wahlig, G. F. Powell, et al., “Subsurface Migration of Radioactive Waste Materials by Particulate Transport,” Nucl. Technol. 58, 511–520 (1982).

    Google Scholar 

  32. M. Elimelech, M. Nagai, C.-H. Ko, et al., “Relative Insignificance of Mineral Grain Zeta Potential to Colloid Transport in Geochemical Heterogeneous Porous Media,” Environ. Science Technol. 34(11), 2143–2148 (2000).

    Article  Google Scholar 

  33. A. J. Fairhurst, P. Warwick, and S. Richardson, “The Influence of Humic Acid on the Absorption of Europium onto Inorganic Colloids as a Function of pH,” Colloids Surfaces A. 99, 187–199 (1995).

    Article  Google Scholar 

  34. P. A. Finn, E. C. Buck, M. Gong, et al., “Colloidal Products and Actinide Species in Leachate from Spent Nuclear Fuel,” Radiochimica Acta 66/67, 189–195 (1994).

    Google Scholar 

  35. J. A. Fitzpatrick and L. A. Spielman, “Filtration of Aqueous Latex Suspensions through Beds of Glass Spheres,” J. Colloid Interface Sci. 43(2), 350–369 (1973).

    Article  Google Scholar 

  36. J. A. Fortner, C. J. Mertz, S. F. Wolf, and P. R. Jemian, “Natural Groundwater Colloids from the USGS J-13 Well in Nye County, NV: A Study Using SAXS and TEM,” in Proceedings of Research Society Symposium on Scientific Basis for Nuclear Waste Management XXVI (Materials Res. Soc., Warrendale, 2003), Vol. 757, pp. 483–488.

    Google Scholar 

  37. J.-M. Garnier, M. K. Pham, P. Ciffroy, et al., “Kinetics of Trace Elements Complication with Suspended Matter and with Filtrable Ligands in Freshwater,” Environ. Sci. Technol. 31(6), 1597–1606 (1997).

    Article  Google Scholar 

  38. Yu. V. Glagolenko, E. G. Dzekun, E. G. Drozhko, et al., “The Strategy of Radioactive Waste Management at the Mayak Corporation,” Vopr. Radiatsionnoi Bezopasnosti, No. 2, 3–10 (1996).

  39. J. Gregory and A. J. Wishart, “Deposition of Latex Particles on Alumina Fibers,” Colloids Surf. 1(3/4), 313–334 (1980).

    Article  Google Scholar 

  40. P. Grindrod, “The Impact of Colloids on the Migration and Dispersal of Radionuclides within Fractured Rocks,” J. Contaminant Hydrol. 13, 167–181 (1993).

    Article  Google Scholar 

  41. B. Gu, Ju. Schmitt, Z. Chen, et al., “Adsorption and Desorption of Natural Organic Matter Fractions on Iron Oxide: Mechanisms and Models,” Environ. Sci. Technol. 28(1), 38–46 (1994).

    Article  Google Scholar 

  42. B. Gu, Ju. Schmitt, Z. Chen, et al., “Adsorption and Desorption of Different Organic Matter Fractions on Iron Oxide,” Geochim. Cosmochim. Acta 59(2), 219–229 (1995).

    Article  Google Scholar 

  43. K. Hara, S. Takeda, and S. Masuda, “Research and Development Program of Geological Disposal of High-Level Radioactive Waste in Japan,” in Proceedings of International Conference on Deep Geological Disposal of Radioactive Waste (Can. Nuclear Soc., Winnipeg, 1996), pp. 1–3, 1–21.

    Google Scholar 

  44. R. V. Harrington and J. A. Apps, “Solidification of High- Level Waste,” Underground Space 6(1), 259–263 (1982).

    Google Scholar 

  45. R. W. Harvey and S. P. Garabedian, “Use of Colloid Filtration Theory in Modeling Movement of Bacteria through Contaminated Sandy Aquifer,” J. Contaminant Hydrology 25(1), 178–185 (1991).

    Google Scholar 

  46. R. W. Harvey, L. H. George, R. Smith, et al., “Transport of Microspheres and Indigenous Bacteria through a Sandy Aquifer: Results of Natural and Forced-Gradient Tracer Experiments,” Environ. Sci. Technol. 23(1), 51–56 (1989).

    Article  Google Scholar 

  47. Y. Inagaki, H. Sakata, H. Furuya, et al., “Effects of Water Redox Conditions and Presence of Magnetite on Leaching of Pu and Np from HLW Glass,” in Proceedings of Research Society on Scientific Basis for Nuclear Waste Management (Materials Res. Soc., Warrendale, 1998), Vol. 506, pp. 177–184.

    Google Scholar 

  48. N. Kallay and E. Matievic, “Particle Adhesion and Removal in Model Systems. IV. Kinetics of Detachment of Hematite Particles from Steel,” J. Colloid Interface Sci. 83(1), 289–300 (1981).

    Article  Google Scholar 

  49. A. B. Kersting, D. W. Efurd, D. L. Finnegan, et al., “Migration of Plutonium in Ground Water at the Nevada Test Site,” Nature 397, 56–59 (1999).

    Article  Google Scholar 

  50. B. H. Keswick and C. P. Gerba, “Viruses in Groundwater,” Environ. Sci. Technol. 14(11), 1290–1297 (1980).

    Article  Google Scholar 

  51. J. I. Kim, B. Delakowitz, P. Zeh, et al., “A Column Experiment for the Study of Colloidal Radionuclide Migration in Gorleben Aquifer System,” Radiochimica Acta 66/67, 165–171 (1994).

    Google Scholar 

  52. V. A. Klyachko and I. E. Apel’tsin, Purification of Natural Waters (Stroiizdat, Moscow, 1971) [in Russian].

    Google Scholar 

  53. R. B. Knapp, M. L. Chiarappa, and W. B. Durham, “An Experimental Exploration of the Transport and Capture of Abiotic Colloids in a Single Fracture,” Water Resour. Res. 36(11), 3139–3149 (2000).

    Article  Google Scholar 

  54. A. Kowal-Fouchard, R. Drot, E. Simori, et al., “Use of Spectroscopic Techniques for Uranium (VI)/Montmorillonite Interaction Modeling,” Environ. Sci. Technol. 38(5), 1399–1407 (2004).

    Article  Google Scholar 

  55. K. B. Krauskopf, “Geology of High-Level Nuclear Waste Disposal,” Annu. Rev. Earth Planet. Sci. 16, 173–200 (1988).

    Article  Google Scholar 

  56. R. Kretzschmar and Th. Schäfer, “Metal Retention and Transport on Colloidal Particles in the Environment,” Elements 1(4), 205–210 (2005).

    Article  Google Scholar 

  57. R. Kretzschmar and H. Sticher, “Transport of Humic-Coated Iron Oxide Colloids in a Sandy Soil: Influence of Ca2+ and Trace Metals,” Environ. Sci. Technol. 31(12), 3497–3504 (1997).

    Article  Google Scholar 

  58. N. P. Laverov, A. V. Kantsel, A. K. Lisitsyn, et al., “Main Problems of Radiogeoecology Related to the Storage of Radioactive Wastes,” Atom. Energ. 71(6), 523–534 (1991).

    Google Scholar 

  59. N. P. Laverov, B. I. Omel’yanenko, and V. I. Velichkin, “Geoecological Aspects of the Disposal of Radioactive Wastes,” Geoekologiya, No. 6, 3–20 (1994).

  60. N. P. Laverov, V. I. Velichkin, and B. I. Omel’yanenko, “Geochemistry of Actinides during the Long-Term Storage and Disposal of Spent Nuclear Fuel,” Geol. Rudn. Mestorozhd. 45(1), 2–23 (2003) [Geol. Ore Deposits 45 (1), 1–18 (2003)].

    Google Scholar 

  61. A. Ledin, S. Karlsson, A. Ducker, et al., “The Adsorption of Europium to Colloidal Iron Oxyhydroxides and Quartz: the Impact of pH and an Aquatic Fulvic Acid,” Radiochimica Acta 66/67, 213–230 (1994).

    Google Scholar 

  62. V. I. Malkovsky and A. A. Pek, “Effect of Elevated Velocity of Particles in Groundwater Flow and Its Role in Colloid-Facilitated Transport of Radionuclides in Underground Medium,” in Transport in Porous Medium (2008) (in press).

  63. V. I. Malkovsky, Yu. P. Dikov, M. B. Chertok, et al., “A Study of Underground Water Sampled Close to the Lake Karachai,” in Proceedings of the 9th International Conference on Physicochemical and Petrophysical Studies in the Earth Sciences (Inst. Physics of the Earth, Russian Acad. Sci., Moscow, 2008), pp. 219–223 [in Russian].

    Google Scholar 

  64. J. F. McCarthy, W. E. Sanford, and P. L. Stafford, “Lanthanide Field Tracers Demonstrate Enhanced Transport of Transuranic Radionuclides by Natural Organic Matter,” Environ. Sci. Technol. 32(24), 3901–3906 (1998).

    Article  Google Scholar 

  65. J. F. McCarthy, B. Gu, L. Liang, et al., “Field Tracer Tests on the Mobility of Natural Organic Matter in a Sandy Aquifer,” Water Resour. Res. 32(5), 1223–1238 (1996).

    Article  Google Scholar 

  66. J. F. McCarthy, K. R. Czerwinski, W. E. Sanford, et al., “Mobilization of Transuranic Radionuclides from Disposal Trenches by Natural Organic Matter,” J. Contaminant Hydrology 30(1), 49–77 (1998).

    Article  Google Scholar 

  67. C. McCombie, A. Lambert, and I. G. McKinley, “Swiss Strategy for Developing a High Level Waste Disposal System,” in Proceedings of International Symposium on Geologic Disposal of Spent Fuel, High-Level and Alpha-Bearing Wastes (IAEA, Vienna, 1993), pp. 365–373.

    Google Scholar 

  68. D. F. McTigue, R. C. Givler, and J. W. Nunziato, “Rheological Effects of Nonuniform Particle Distribution in Dilute Suspensions,” J. Rheology 30(5), 1053–1076 (1986).

    Article  Google Scholar 

  69. N. Miekeley, H. Coutinho de Jesus, C. L. Porto da Silveira, et al., “Chemical and Physical Characterization of Suspended Particles and Colloids in Waters from Osamu Utsumi Mine and Morro de Ferro Analogue Study Sites,” J. Geochem. Exploration 45(1–3), 409–437 (1992).

    Article  Google Scholar 

  70. W. B. Mills, S. Liu, and F. K. Fong, “Literature Review and Model (COMET) for Colloid/Metals Transport in Porous Media,” Ground Water 29(2), 199–208 (1991).

    Article  Google Scholar 

  71. D. M. Mints, “A Kinetics of Filtration for Low-Concentration Water Suspensions on Water-Purifying Filters,” Dokl. Akad. Nauk SSSR 78(2), 315–318 (1951).

    Google Scholar 

  72. V. A. Mironenko and V. G. Rumynin, Problems of Hydrogeoecology (Moscow State Mining Univ., Moscow, 1998), Vol. 1 [in Russian].

    Google Scholar 

  73. V. A. Mironenko, E. V. Mol’skii, and V. G. Rumynin, The Study of Underground Water Pollution in Mining Districts (Nedra, Moscow, 1988) [in Russian].

    Google Scholar 

  74. T. Missana, M. J. Turrero, and A. Adell, “Surface Charge and Electrophoretic Properties of Colloids Obtained from Homoionic and Natural Bentonite,” in Proceedings of Research Society Symposium on Scientific Basis for Nuclear Waste Management XXIII (Materials Res. Soc., Warrendale, 2000), Vol. 608, pp. 255–260.

    Google Scholar 

  75. F. M. M. Morel and P. M. Gschwend, “The Role of Colloids in the Partitioning of Solutes in Natural Waters,” in Aquatic Surface Chemistry (Wiley, New York, 1987), pp. 405–421.

    Google Scholar 

  76. D. M. Nelson, W. R. Penrose, J. O. Karttunen, et al., “Effects of Dissolved Organic Carbon on the Adsorption Properties of Plutonium in Natural Waters,” Environ. Sci. Technol. 19(2), 127–131 (1985).

    Article  Google Scholar 

  77. M. Norden, J. H. Ephraim, and B. Allard, “The Influence of a Fulvic Acid on the Adsorption of Europium and Strontium by Alumina and Quartz: Effects of pH and Ionic Strength,” Radiochimica Acta 65, 265–270 (1994).

    Google Scholar 

  78. J. W. Nyhan, B. J. Drennon, W. V. Abeele, et al., “Distribution of Plutonium and Americium beneath a 33-Yr-Old Liquid Waste Disposal Site,” J. Environ. Quality 14(4), 501–509 (1985).

    Article  Google Scholar 

  79. C. R. O’Melia, “Particle-Particle Interaction,” in Aquatic Surface Chemistry (Wiley, New York, 1987), pp. 385–403.

    Google Scholar 

  80. U. Olofsson, B. Allard, B. Torstenfelt, et al., “Properties and Mobilities of Actinide Colloids in Geologic Systems,” in Proceeding of International Symposium on Scientific Basis for Nuclear Waste Management V (Elsevier, New York, 1982), pp. 755–763.

    Google Scholar 

  81. K. A. Orlandini, W. R. Penrose, B. R. Harvey, et al., “Colloidal Behavior of Actinides in an Oligotrophic Lake,” Environ. Sci. Technol. 24(5), 706–712 (1990).

    Article  Google Scholar 

  82. T. E. Payne, R. Edis, B. R. Fenton, et al., “Comparison of Laboratory Uranium Sorption Data with ‘in Situ Distribution Coefficient’ at the Koongarra Uranium Deposit, Northern Australia,” J. Environ. Radioactivity 57(1), 35–55 (2001).

    Article  Google Scholar 

  83. W. R. Penrose, W. L. Polzer, E. H. Essington, et al., “Mobility of Plutonium and Americium through a Shallow Aquifer in a Semiarid Region,” Environ. Sci. Technol. 24(2), 228–234 (1990).

    Article  Google Scholar 

  84. R. Rajagopalan and C. Tien, “Trajectory Analysis of Deep-Bed Filtration with the Sphere-in-Cell Porous Media Model,” J. Am. Inst. Chem. Eng. 22(3), 523–532 (1976).

    Google Scholar 

  85. R. Rajagopalan and C. Tien, “The Theory of Deep Bed Filtration,” in Progress in Filtration and Separation (Elsevier, Amsterdam, 1979), Vol. 1, pp. 179–269.

    Google Scholar 

  86. A. E. Ringwood, “Safe Disposal of High-Level Radioactive Wastes,” Fortschritt in Mineralogie 58(2), 149–168 (1980).

    Google Scholar 

  87. E. Rückenstein and D. C. Prieve, Rate of Deposition of Brownian Particles under the Action of London and Double-Layer Forces,” J. Chem. Soc., 1522–1536 (1973).

  88. V. G. Rumynin, L. N. Sindalovsky, E. V. Zakharova, et al., “Experimental and Modeling Studies of the Colloidal Transport of Radionuclides (As Applied to the Conditions of Deep Disposal of Fluid Radioactive Wastes in Test Site of the Siberian Chemical Combine): 2. Model Analysis of Migration,” Geoekologiya, No. 4, 310–323 (2007).

  89. J. N. Ryan and M. Elimelech, “Colloid Mobilization and Transport in Groundwater,” Colloids Surfaces A 107, 1–56 (1996).

    Article  Google Scholar 

  90. J. N. Ryan, M. Elimelech, R. A. Ard, et al., “Bacteriophage PRD1 and Silica Colloid Transport and Recovery in an Iron Oxide-Coated Sand Aquifer,” Environ. Sci. Technol. 33(1), 63–73 (1999).

    Article  Google Scholar 

  91. J. E. Saiers and G. M. Hornberger, “The Role of Colloidal Kaolinite in the Transport of Cesium through Laboratory Sand Columns,” Water Resor. Res. 32(1), 33–41 (1996).

    Article  Google Scholar 

  92. M. M. Senyavin, E. V. Venitsianov, and R. I. Ayukaev, “On Mathematical Models and Engineering Methods for Calculation of Natural Water Purification by Filtering,” Vodn. Resur., No. 2, 157–170 (1977).

  93. Y.-H. Shen, “Sorption of Humic Acid to Soil: the Role of Soil Mineral Composition,” Chemosphere 38(11), 2489–2499 (1999).

    Article  Google Scholar 

  94. S. A. Short and R. T. Lowson, “234U/238U and 230Th/234U Activity Ratios in the Colloidal Phases of Aquifers in Lateritic Weathered Zones,” Geochim. Cosmochim. Acta 52(11), 2555–2563 (1988).

    Article  Google Scholar 

  95. N. G. Skvortsov, E. V. Venitsianov, and M. M. Senyavin, “Calculation of the Filtration Clarification of Low-Concentration Suspensions on Finely Dispersed Charging,” Teor. Osnovy Khim. Tekhnol. 15(1), 141–144 (1981).

    Google Scholar 

  96. H. Small, F. L. Saunders, and J. Solc, “Hydrodynamic Chromatography,” Colloid Interface Sci. 6(4), 237–266 (1976).

    Article  Google Scholar 

  97. P. A. Smith and C. Degueldre, “Colloid-Facilitated Transport of Radionuclides through Fractured Media,” J. Contaminant Hydrology 13, 143–166 (1993).

    Article  Google Scholar 

  98. D. K. Smith, D. L. Finnegan, and S. M. Bowen, “An Inventory of Long-Lived Radionuclides Residual from Underground Nuclear Testing at the Nevada Test Site, 1951–1992,” J. Environ. Radioactivity 67(1), 35–51 (2003).

    Article  Google Scholar 

  99. L. A. Spielman and P. M. Cukor, “Deposition of Non-Brownian Particles under Colloidal Forces,” J. Colloid Interface Sci. 43(1), 51–65 (1974).

    Article  Google Scholar 

  100. L. A. Spielman and S. K. Friedlander, “Role of Electrical Double Layer in Particle Deposition by Convective Diffusion,” J. Colloid Interface Sci. 46(1), 22–31 (1974).

    Article  Google Scholar 

  101. P. Strand, J. E. Brown, E. Drozhko, et al., “Biogeochemical Behavior of 137Cs and 90Sr in the Artificial Reservoirs of Mayak PA, Russia,” Sci. Total Environ. 241, 107–116 (1999).

    Article  Google Scholar 

  102. J. C. Tait, P. J. Hayward, and J. C. Devgun, “Technologies for Contaminant Immobilization and Disposal of Radioactive Wastes,” Canad. J. Civil Eng. 16(4), 444–458 (1989).

    Article  Google Scholar 

  103. T. Tanaka, S. Nagao, Y. Sakamoto, et al., “Distribution Coefficient in the Sorption of Radionuclides onto Ando Soil in the Presence of Humic Acid,” J. Nuclear Sci. Technol. 34(8), 829–834 (1997).

    Article  Google Scholar 

  104. C. Tien and A. C. Payatakes, “Advances in Deep Bed Filtration,” Am. Inst. Chem. Eng. J. 25(5), 737–759 (1979).

    Google Scholar 

  105. E. Tipping, “The Adsorption of Aquatic Humic Substances by Iron Oxides,” Geochim. Cosmochim. Acta 45(2), 191–199 (1981).

    Article  Google Scholar 

  106. W. Um and C. Papelis, “Geochemical Effects on Colloid- Facilitated Metal Transport through Zeolitized Tuffs from the Nevada Test Site,” Environ. Geol. 43(1–2), 209–218 (2002).

    Google Scholar 

  107. R. Vaidyanathan and C. Tien, “Hydrosol Deposition in Granular Beds,” Chem. Eng. Sci. 43(2), 289–302 (1988).

    Article  Google Scholar 

  108. E. V. Venitsianov and R. I. Ayukaev, “The Use of Sorption Dynamics Theory for Study of Filtration Separation of Suspension in Porous Medium. 1. Parallel Transfer of Concentration Front in the Case of Homogeneous Suspensions,” Izv. Akad. Nauk SSSR, Ser. Khim., No. 8, 1719–1723 (1977).

  109. E. V. Venitsianov and M. M. Senyavin, “Methods of Quantitative Description and the Calculation for Filtration Clarification of Suspensions,” Teoretich. Osnovy Khim. Tekhnol. 14(3), 405–417 (1980).

    Google Scholar 

  110. E. V. Venitsianov and R. N. Rubinstein, Dynamics of Sorption from Fluid Media (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  111. P. Vilks and C. Degueldre, “Sorption Behaviour of 85Sr, 131I, and 137Cs on Colloids and Suspended Particles from the Grimsel Test Site, Switzerland,” Appl. Geochem. 6, 553–563 (1991).

    Article  Google Scholar 

  112. P. Vilks, H. G. Miller, and D. C. Doern, “Natural Colloids and Suspended Particles in the Whiteshell Research Area, Manitoba, Canada, and Their Potential Effect on Radiocolloid Formation,” Appl. Geochem. 6, 565–574 (1991).

    Article  Google Scholar 

  113. J. Wan and T. K. Tokunaga, “Film Straining of Colloids in Unsaturated Porous Media: Conceptual Model and Experimental Testing,” Envirn. Sci. Technol. 31(8), 2413–2420 (1997).

    Article  Google Scholar 

  114. J. Wan and J. L. Wilson, “Colloid Transport in Unsaturated Porous Medium,” Water Resour. Res. 30(4), 857–864 (1994).

    Article  Google Scholar 

  115. J. M. Zachara, S. C. Smith, Ch. Liu, et al., “Sorption of Cs+ to Micaceous Subsurface Sediments from the Hanford Site, U.S.A,” Geochim. Cosmochim. Acta 66(2), 193–211 (2002).

    Article  Google Scholar 

  116. J. Zhuang, M. Flury, and Y. Jin, “Colloid-Facilitated Cs Transport through Water-Saturated Hanford Sediment and Ottawa Sand,” Environ. Sci. Technol. 37(21), 4905–4911 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Malkovsky.

Additional information

Original Russian Text © V.I. Malkovsky, A.A. Pek, 2009, published in Geologiya Rudnykh Mestorozhdenii, 2009, Vol. 51, No. 2, pp. 91–106.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malkovsky, V.I., Pek, A.A. Effect of colloids on transfer of radionuclides by subsurface water. Geol. Ore Deposits 51, 79–92 (2009). https://doi.org/10.1134/S1075701509020019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701509020019

Keywords

Navigation