Skip to main content
Log in

Water in the structure of minerals from mantle peridotites as controlled bythermal and redox conditions in the upper mantle

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Hydrous species and the amount of water (OH ions and crystal hydrate H2O) in structures of nominally anhydrous rock-forming minerals (olivine, ortho- and clinopyroxenes) were studied with Fourier spectroscopy in peridotite nodules (19 samples) from Cenozoic alkali basalts of the Baikal-Mongolia region (Dariganga Plateau, Taryat Depression, and Vitim Plateau). Single-crystal samples oriented relative to the crystallographic axes of minerals were examined with an FTIR spectrometer equipped with an IR microscope at the points of platelets free from fluid inclusions. FTIR spectra were measured in regions of stretching vibrations of OH and H2O (3800–3000 cm−1) and deformation vibrations of H2O (1850–1450 cm−1). The water content in mineral structures was determined from integral intensities. To estimate the conditions of entrapment and loss of structural water in minerals, their chemical composition, including Fe2+ and Fe3+ contents, was determined with an electron microprobe analysis and Mössbauer spectroscopy. The bulk chemical composition of some nodules was determined with XRF and ICP MS. The total water content (OH + H2O) varies from 150 to 1140 ppm in olivines, from 45 to 870 ppm in clinopyroxenes, and from 40 to 1100 ppm in orthopyroxenes. Both water species in the mineral structures are retained down to a depth of 150–160 km in wide temperature and pressure ranges (1100–1500 °C, 32–47 kbar) at the oxygen fugacity of −1.4 to −0.1 log units relative to that of the quartz-fayalite-magnetite buffer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Asimov, L. S. Stein, J. L. Mosenfelder, and G. R. Rossman, “Quantitative Polarized Infrared Analysis of Trace OH in Populations of Randomly Oriented Mineral Grains,” Am. Miner. 91, 278–284 (2006).

    Article  Google Scholar 

  2. M. S. Babushkina, L. Nikitina, N. O. Ovchinnikov, et al., “Composition and Structure of Phlogopite from Lamproites of Kostomuksha,” Zap. Vseross. Mineral. O-va 126(2), 71–84 (1997)

    Google Scholar 

  3. M. S. Babushkina, L. Nikitina, N. O. Ovchinnikov, et al., “Long- and Short-Range Ordering of Cations in Structures of Potassium Amphiboles (Mössbauer and Infrared Spectroscopy),” Zap. Vseross. Mineral. O-va 134(3), 105–130 (2005).

    Google Scholar 

  4. Q. Bai and D. L. Kohlstedt, “Substantial Hydrogen Solubility in Olivine and Implication for Water in the Mantle,” Nature 357, 672–674 (1992).

    Article  Google Scholar 

  5. D. R. Bell and G. R. Rossman, “The Distribution of Hydroxyl in Garnets from the Subcontinental Mantle of Southern Africa,” Contrib. Miner. Petrol. 111, 161–178 (1992a).

    Article  Google Scholar 

  6. D. R. Bell and G. R. Rossman, “Water in Earth’s Mantle: The Role of Nominally Anhydrous Minerals,” Science 255, 1391–1397 (1992b).

    Article  Google Scholar 

  7. D. R. Bell and G. R. Rossman, “Hydroxide in Olivine: A Quantitative Determination of the Absolute Amount and Calibration of the IR Spectrum,” J. Geophys. Res. 108(B2), 1–9 (2003).

    Article  Google Scholar 

  8. D. R. Bell, G. R. Rossman, J. Maldener, D. Endish, and F. Rauch, “Hydroxide in Olivine: A Quantitative Determination of the Absolute Amount and Calibration of the IR Spectrum,” Am. Miner. 89, 998–1003 (2004).

    Google Scholar 

  9. D. R. Bell, D. Ihinger, and G. R. Rossman, “Quantitative Analysis of Trace OH in Garnet and Pyroxenes,” Am. Miner. 80, 465–474 (1995).

    Google Scholar 

  10. J. Chen, T. Inoue, D. J. Weiner, Y. Wu, and T. Vaughan, “Strength and Water Weakening of Mantle Minerals, Olivine, Wadsleyite, and Ringwoodite,” Geophys. Res. Lett. 25, 575–578 (1998).

    Article  Google Scholar 

  11. H. Cho and G. R. Rossman, “Single-Crystal NMR Studies of Low-Concentration Hydrous Species in Minerals: Grossular Garnet,” Am. Miner. 78, 1149–1164 (1993).

    Google Scholar 

  12. J. A. D. Connoly, “Phase Diagram Methods for Graphitic Rocks and Application to the System C-O-H-FeO-TiO2-SiO2,” Contrib. Miner. Petrol. 119, 94–116 (1995).

    Article  Google Scholar 

  13. G. A. Gaetani, T. L. Grove, and W. B. Bryan, “The Influence of Water on the Petrogenesis of Subduction-Related Igneous Rocks,” Nature, 36, 332–334 (1993).

    Article  Google Scholar 

  14. C. A. Geiger, K. Longer, D. R. Bell, G.R. Rossman, and B. Wikler, “The Hydroxide Component in Synthetic Pyrope,” Am. Miner. 76, 49–59 (1991).

    Google Scholar 

  15. V. A. Glebovitsky, L. P. Nikitina, V. Ya. Khiltova, and N. O. Ovchinnikov, “The Thermal Regimes of the Upper Mantle beneath Precambnan and Phanerozoic Structures up to the Thermobarometry Data of Mantle Xenoliths,” Lithos 74, 1–26 (2004).

    Article  Google Scholar 

  16. J. R. Goldsmith, “Al/Si Interdiffusion in Albite: Effect of Pressure and the Role of Hydrogen,” Contrib. Miner. Petrol. 95, 311–321 (1987).

    Article  Google Scholar 

  17. J. Ingrin and H. Skogby, “Hydrogen in Nominally Anhydrous Upper-Mantle Minerals: Concentration Levels and Implications,” Eur. J. Miner. 12, 543–570 (2000).

    Google Scholar 

  18. T. Inoue, D. J. Weidner, A. Northrup, and J. B. Parise, “Elastic Properties of Hydrous Ringwoodite (γ-Phase) in Mg2SiO4,” Earth Planet. Sci. Lett. 160, 107–113 (1998).

    Article  Google Scholar 

  19. V. Jamtveit, R. Brooker, K. Brooks, M. Larsen, and T. Pedersen, “The Water Content of Olivines from North Atlantic Volcanic Province,” Earth Planet. Sci. Let. 186, 401–415 (2001).

    Article  Google Scholar 

  20. A. D. Johnston and B. Schwab, “Constraints on Clinopyroxene/Melt Partitioning of REE, Rb, Sr, Ti, Cr, Zr, and Nb during Mantle Melting: First Insight from Peridotite Melting Experiments at 1.0 GPa,” Geochim. Cosmocim. Acta. 68(23), 4949–4962 (2004).

    Article  Google Scholar 

  21. A. A. Kadik, “Oxygen Fugacity Regime in the Upper Mantle as a Reflection of the Chemical Differentiation of Planetary Materials,” Geokhimiya 44(1), 63–79 (2006) [Geochem. Int. 44 (1), 56–71 (2006)].

    Google Scholar 

  22. S. Karato, “The Role of Hydrogen in the Electrical Conductivity of the Upper Mantle,” Nature 347, 272–273 (1990).

    Article  Google Scholar 

  23. S. Karato and H. Jung, “Water, Partial Melting, and the Origin of the Seismic Low-Velocity and High-Attenuation Zone in the Upper Mantle,” Earth Planet. Sci. Lett. 157, 193–207 (1998).

    Article  Google Scholar 

  24. I. Katayama, S. Nakashima, and H. Yurimoto, “Water Content in Natural Eclogite and Implication for Water Transport into the Deep Upper Mantle,” Lithos 86, 245–259 (2006).

    Article  Google Scholar 

  25. H. Keppler and M. Rauch, “Water Solubility in Nominally Anhydrous Minerals Measured by FTIR and 1H MAS NMR: The Effect of Sample Preparation,” Phys. Chem. Mineral. 27, 371–376 (2000).

    Article  Google Scholar 

  26. N. R. Khisina and R. Wirth, “Hydrous Olivine (Mg1 − y Fe 2+y )2 − x VxSiO4H2 x: A New DHMS Phase of Variable Composition Observed as Nanometer-Sized Precipitations in Mantle Olivine,” Phys. Chem. Miner. 29, 98–111 (2002).

    Article  Google Scholar 

  27. N. R. Khisina, R. Wirth, M. Andrut, and A. V. Ukhanov, “Extrinsic and Intrinsic Mode of Hydrogen Occurrence in Natural Olivines: FTIR and TEM Investigation,” Phys. Chem. Miner. 28, 291–301 (2001).

    Article  Google Scholar 

  28. K. Koga, E. Hauri, M. Hirschmann, and D. Bell, “Hydrogen Concentration Analyses Using SIMS and FTIR: Comparison and Calibration for Nominally Anhydrous Minerals,” Geochem. Geophys. Geosyst. 4(2), 1019 (2003).

    Article  Google Scholar 

  29. D. L. Kohlstedt, H. Keppler, and D. C. Rubie, “Solubility of Water in the ά, β and γ Phases of (Mg,Fe)2SiO4,” Contrib. Miner. Petrol. 123, 347–357 (1996).

    Article  Google Scholar 

  30. S. C. Kohn, “Solubility of H2O in Nominally Anhydrous Mantle Minerals Using 1H MAS NMR,” Am. Miner. 81, 1523–1526 (1996).

    Google Scholar 

  31. M. Kurosawa, H. Yurimoto, and S. Sueno, “Patterns in the Hydrogen and Trace Element Compositions of Mantle Olivines,” Phys. Chem. Miner. 24, 385–395 (1997).

    Article  Google Scholar 

  32. I. Kushiro, “Partial Melting of Mantle Wedge and Evolution of Island Arc Crust,” J. Geophys. Res. B10, 15 929–15 939 (1990).

    Google Scholar 

  33. W. A. Lanford, “Analysis for Hydrogen by Nuclear Reaction and Energy Recoil Detection,” Nucl. Instrument. Methods Phys. Res. Sect. B., 66, 65–82 (1992).

    Article  Google Scholar 

  34. W. A. Lanford, H. Trautvetter, J. F. Ziegier, and J. Keller, “New Precision Technique for Measuring the Concentration Versus Depth of Hydrogen in Solids,” Appl. Phys. Lett. 28, 554–570 (1976).

    Article  Google Scholar 

  35. E. Libovitzky and G. R. Rossman, “An IR Absorption Calibration for Water in Phospholipids,” Am. Miner. 82, 1111–1115 (1997).

    Google Scholar 

  36. E. Libowitzky and G. R. Rossman, “Principles of Quantitative Absorbance Measurements in Anisotropic Crystals,” Phys. Chem. Miner. 23, 319–327 (1996).

    Article  Google Scholar 

  37. R. Lu and H. Keppler, “Water Solubility in Pyrope to 100 Kbar,” Contrib. Miner. Petrol. 129, 35–42 (1997).

    Article  Google Scholar 

  38. S. J. Makswell, D. L. Kohlstedt, and M. S. Paterson, “The Role of Water in the Deformation of Olivine Single Crystals,” J. Geophys. Res. B13, 11 319–11 333 (1985).

    Google Scholar 

  39. C. McCammon, “Mössbauer Spectroscopy of Quenched High-Pressure Phases: Investigating the Earth’s Interior,” Hyperfine Interactions 90, 89–105 (1994).

    Article  Google Scholar 

  40. R. F. Mcmillan, M. Akaogi, R. K. Sato, B. Poe, and J. Foley, “Hydroxyl Groups in b-Mg2SiO4,” Am. Miner. 76, 354–360 (1991).

    Google Scholar 

  41. M. Murakami, K. Hirose, H. Yurimoto, S. Nakashima, and N. Takafuji, “Water in the Earth’s Lower Mantle,” Science 295, 1885–1887 (2002).

    Article  Google Scholar 

  42. L. Nikitina and M. V. Ivanov, Geological Thermobarometry on the Basis of Reactions of Mineral Formation with Participation of the Phases Variable in Composition (Nedra, St. Petersburg, 1992) [In Russian].

    Google Scholar 

  43. L. Nikitina, A. G. Goncharov, A. K. Saltykova, and M. S. Babushkina, Redox Conditions of the Continental Lithospheric Mantle of the Baikal-Mongolia Area (in press).

  44. M. Paterson, “The Determination of Hydroxyl by Infrared Absorption in Quartz, Silicate Glasses, and Similar Material,” Bull. Miner. 105, 20–29 (1982).

    Google Scholar 

  45. A. H. Peslier, J. F. Luhr, and J. Post, “Low Water Contents in Pyroxenes from Spinel-Peridotites of the Oxidized, Sub-Arc Mantle Wedge,” Earth. Planet. Sci. Let. 201, 69–86 (2002).

    Article  Google Scholar 

  46. J. Pickering-Witter and A. D. Johnston, “The Effects of Variable Bulk Composition on the Melting Systematics of Fertile Peridotitic Assemblages,” Contrib. Miner. Petrol. 140, 190–211 (2000).

    Article  Google Scholar 

  47. B. G. Ponomarev and I. L. Lapides, “Hydroxyl Probe in Micas: Analysis of Cation Distribution in Tetrahedrons and Octahedrons from IR Spectrum,” in Proceedings of VI All-Union Symposium on Isomorphism (Zvenigorod, 1988) p. 175.

  48. M. Rauch and H. Keppler, “Water Solubility in Orthopyroxene,” Contrib. Miner. Petrol. 143, 525–536 (2002).

    Google Scholar 

  49. J. A. C. Robinson, B. J. Wood, and J. D. Blundy, “The Beginning of Melting of Fertile and Depleted Peridotites at 1.5 GPa,” Earth Planet. Sci. Lett. 155, 97–111 (1998).

    Article  Google Scholar 

  50. J. M. Rousseaux, C. Gomes-Laverde, Y. Nathn, and G. Rouxhet, “Correlations between the Hydroxyl Stretching Bands and the Chemical Composition of Trioctahedral Micas,” in Proceedings of International Clay Conference Ed. by J. M. Serratose (Madrid, Division De Ciencias CSIC, 1972), pp. 89–98.

    Google Scholar 

  51. B. E. Schwab and A. D. Johnston, “Melting Systematics of Modally Variable Compositionally Intermediate Peridotites and the Effects of Mineral Fertility,” J. Petrol. 42(10), 1789–1811 (2001).

    Article  Google Scholar 

  52. H. Skogby, D. R. Bell, and G. R. Rossman, “Hydroxide in Pyroxene: Variations in the Natural Environment,” Am. Miner. 75, 664–764 (1990).

    Google Scholar 

  53. J. R. Smyth, “A Crystallographic Model for Hydrous Wadsleyite (b-Mg2SiO4): An Ocean in the Earth’s Interior,” Am. Miner. 79, 1021–1024 (1994).

    Google Scholar 

  54. R. J. Sweeney, V. M. Prozesky, and K. A. Springhorn, “Use of the Elastic Recoil Detection Analysis (ERDA) Microbeam Technique for the Quantitative Determination of Hydrogen in Materials and Hydrogen Partitioning between Olivine and Melt at High Pressures,” Geochim. Cosmochim. Acta. 61, 101–113 (1997).

    Article  Google Scholar 

  55. W. R. Taylor, M. Kamperman, and R. Hamilton, “New Thermobarometer and Oxygen Fugacity Sensor Calibrations for Ilmenite- and Chromian Spinel-Bearing Peridotitic Assemblages,” in Proceedings of VII Internation Kimberlite Conference (Cape Town, South Africa, 1998), 891–892.

  56. R. G. Tronnes and D. J. Frost, Peridotite Melting and Mineral-Melt Partitioning of Major and Minor Elements at 22–24.5 Gpa, Earth Planet. Sci. Lett. 197, 117–131 (2002).

    Article  Google Scholar 

  57. M. J. Walter, “Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithospere,” J. Petrol. 39, 29–60 (1998).

    Article  Google Scholar 

  58. A. C. Withers, B. J. Wood, and M. R. Carroll, “The OH Content of Pyrope at High Pressure,” Chem. Geol. 147, 161–171 (1998).

    Article  Google Scholar 

  59. J. Yesinowski, H. Eckert, and G. R. Rossman, “Characterization of Hydrous Species in Minerals by Highspeed 1H MAS NMR,” J. Am. Chem. Soc. 110, 1367–1375 (1988).

    Article  Google Scholar 

  60. T. E. Young, H. W. Green II, A. M. Hofmeister, and D. Walker, “Infrared Spectroscopic Investigation of Hydroxyl in b-(Mg,Fe)2SiO4 and Coexisting Olivine: Implications for Mantle Evolution and Dynamics,” Phys. Chem. Miner. 19, 409–422 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Nikitina.

Additional information

Original Russian Text © M.S. Babushkina, L.P. Nikitina, A.G. Goncharov, N. I. Ponomareva, 2009, published in Zapiski RMO (Proceedings of the Russian Mineralogical Society), 2009, Pt. CXXXVII, No. 1, pp. 3–19.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babushkina, M.S., Nikitina, L.P., Goncharov, A.G. et al. Water in the structure of minerals from mantle peridotites as controlled bythermal and redox conditions in the upper mantle. Geol. Ore Deposits 51, 712–722 (2009). https://doi.org/10.1134/S1075701509080042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701509080042

Keywords

Navigation