Skip to main content
Log in

Model of heat and mass transfer by fluid during formation of Mo-U deposits in the Strel’tsovka ore field, eastern Transbaikal region: Forced convection of solutions generated by a deep source

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The Strel’tsovka and Antei uranium deposits located in the Strel’tsovka caldera are unique in ore resources. According to the considered mathematical model, the uranium source of these deposits was related to the middle-lower crustal silicic magma chambers or had mantle origin. Boundary conditions of the model are based on modern views of physicochemical conditions of hydrothermal process in the Strel’tsovka ore field and factors governing ore deposition therein. Modeling results are consistent with morphology of orebodies and ultimate uranium resources of the deposits and thus confirm indirectly that the physicochemical parameters of the ore-forming system are coherent. The maximal duration of uranium ore deposition is estimated at 500 ka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Aleshin, V. I. Velichkin, and T. L. Krylova, “Genesis and Formation Conditions of Deposits in the Unique Strel’tsovka Molybdenum-Uranium Ore Field: New Mineralogical, Geochemical, and Physicochemical Evidence,” Geol. Rudn. Mestorozhd. 49(5), 446–470 (2007)[Geol. Ore Deposits 49 (5), 392–412 (2007)].

    Google Scholar 

  2. O. V. Andreeva and V. A. Golovin, “Metasomatic Processes at the Uranium Deposits of the Tulukui Caldera in the Eastern Transbaikal Region, Russia,” Geol. Rudn. Mestorozhd. 40(3), 205–220 (1998) [Geol. Ore Deposits 40 (3), 184–196 (1998)].

    Google Scholar 

  3. O. V. Andreeva, V. A. Golovin, P. S. Kozlova, et al., “Evolution of the Mesozoic Magmatism and Ore-Metasomatic Processes in the Southeastern Transbaikal Region, Russia,” Geol. Rudn. Mestorozhd. 38(2), 115–130 (1996) [Geol. Ore Deposits 38 (2), 101–113 (1996)].

    Google Scholar 

  4. P. L. Arsen’ev and A. A. Pek, “Modeling of Hydrothermal Heat and Mass Transfer during the Formation of the Deposits Related to the Zones of Deeply Penetrating Faults,” Geol. Rudn. Mestorozhd. 33(5), 26–38 (1991).

    Google Scholar 

  5. Vikt. L. Barsukov and A. A. Pek, “Role of Automixing of Solutions in the Formation of Hydrothermal Vein Deposits,” Geokhimiya 18(12), 1780–1796 (1980).

    Google Scholar 

  6. Vikt. L. Barsukov and M. V. Borisov, “Modeling of Geochemical Consequences of Automixing of Hydrothermal Solutions. I. Mass Exchange in Zones of Spreading of hydrothermal Flow,” Geokhimiya 20(8), 1108–1123 (1982a).

    Google Scholar 

  7. Vikt. L. Barsukov and M. V. Borisov, “Modeling of Geochemical Consequences of Automixing of Hydrothermal Solutions. II. “Mass Exchange in Zones of Convergence of Hydrothermal Flow,” Geokhimiya 20(9), 1244–1256 (1982b).

    Google Scholar 

  8. Vikt. L. Barsukov and M. V. Borisov, ““Modeling of Geochemical Consequences of Automixing of Hydrothermal Solutions. III. Mass Exchange in the System of Several Consecutive Rhythms of Automixing,” Geokhimiya 20(11), 1562–1580 (1982c).

    Google Scholar 

  9. M. V. Borisov, Geochemical and Thermodynamic Models of the Hydrothermal Ore Veins (Nauchnyi Mir, Moscow, 2000) [in Russian].

    Google Scholar 

  10. W. F. Brace, “Permeability of Crystalline and Argillaceous Rocks,” Inter. J. Rock Mech. Min. Sci. 17(5), 241–251 (1980).

    Article  Google Scholar 

  11. A. A. Burmistrov and V. N. Sokolov, “Links of the Dynamics of Free Saturation of Rocks to the Structure of Their Porous Space,” in Proceedings of the 8th International Conference on “Physicochemical and Petrophysical Studies In the Earth Sciences” (Inst. Physics of the Earth, Moscow, 2007), p. 14.

    Google Scholar 

  12. J. S. Caine, J. P. Evans, and C. B. Forster, “Fault Zone Architecture and Permeability Structure,” Geology 24(11), 1025–1028 (1996).

    Article  Google Scholar 

  13. I. V. Chernyshev and V. N. Golubev, “The Strel’tsovskoe Deposit, Eastern Transbaikalia: Isotope Dating of Mineralization in Russia’s Largest Uranium Deposit,” Geokhimiya 34(10), 924–937 (1996) [Geochem. Int. 34 (10), 834–846 (1996)].

    Google Scholar 

  14. F. M. Chester and J. M. Logan, “Implications for Mechanical Properties of Brittle Faults from Observations of the Pinchbowl Fault Zone, California,” PAGEOPH 124(1/2), 79–106 (1986).

    Article  Google Scholar 

  15. A. A. Dukhovsky, V. A. Amantov, N. A. Artamonova, et al., “Seismic and Gravity Images of the Major Ore districts and Fields in the Southeastern Argun Area, the Eastern Transbaikal Region,” Geol. Rudn. Mestorozhd. 40(2), 99–113 (1998) [Geol. Ore Deposits 40 (2), 87–99 (1998)].

    Google Scholar 

  16. A. V. Gurevich, M. S. Verkhovsky, D. N. Topor, and A. A. Pek, “The Influence of Highly Permeable Fault on Hydrodynamics of Homogeneous Fluid Flow (2D Problem),” in Proceedings of the 28th Intern. Geol. Congress (Washington, DC, 1989), Vol. 3, pp. 472–473.

    Google Scholar 

  17. L. A. Hageman and D. M. Young, Applied Iterative Methods (Academic Press, New York, 1981; Mir, Moscow, 1986).

    Google Scholar 

  18. Handbook of Physical Constants, Ed. by S. P. Clark, Jr. (Yale University, New Haven, 1966; Mir, Moscow, 1969) [in Russian].

    Google Scholar 

  19. L. P. Ishchukova, “Strel’tsovka Ore Field,” in Ore Deposits in the Transbaikal Region (Geoinformmark, Moscow, 1995), Vol. I, Book II, pp. 130–144 [in Russian].

    Google Scholar 

  20. L. P. Ishchukova, Uranium Deposits of the Strel’tsovka Ore Field in the Transbaikal Region (Tipografiya “Glazkovskaya”, Irkutsk, 2007) [in Russian].

    Google Scholar 

  21. L. P. Ishchukova, A. A. Ashikhmin, A. K. Konstantinov, et al., Uranium Deposits in Volcanotectonic Structures (VIMS, Moscow, 2005) [in Russian].

    Google Scholar 

  22. L. P. Ishchukova, Yu. A. Igoshin, B. V. Avdeev, et al., Geology of the Urulyungui Ore District and Molybdenum-Uranium Deposits of the Strel’tsovka Ore Field (Geoinformmark, Moscow, 1998) [in Russian].

    Google Scholar 

  23. T. L. Krylova, A. P. Aleshin, T. Lhomme, et al., “New Data on the Formation Conditions of the Uranium Ores at the Streltsovsky and Antei Deposits (Eastern Transbaikalia, Russia),” in Proceedings of the 12th Quadrennial IAGOD Symp. on Understanding the Genesis of Ore Deposits To Meet the Demands of the 21th Century (Moscow, 2006), CD 181.pdf.

  24. T. L. Krylova, A. P. Aleshin, V. I. Velichkin, et al., “Uranium-Bearing Fluid Composition at the Streltsovskoye and Antei Deposits (Eastern Transbaikalia, Russia),” in Proceedings of the Intern. Workshop of the IAGOD (Chech Geological Surv., Prague, 2002), pp. 69–72.

    Google Scholar 

  25. N. P. Laverov, V. I. Velichkin, and M. V. Shumilin, “Uranium deposits of the CMEA and SFRY Countries: the Main Economic and Genetic Types and Their Localization,” Geol. Rudn. Mestorozhd. 34(2), 3–18 (1992).

    Google Scholar 

  26. N. P. Laverov, Vikt. L. Barsukov, V. I. Malkovsky, and A. A. Pek, “Hydrodynamic Conditions of Solution Mixing during Formation of Crosscutting Veins in Bedded Sequences,” Geol. Rudn. Mestorozhd. 37(4), 344–357 (1995).

    Google Scholar 

  27. M. F. Maksimova and E. M. Shmariovich, Stratal Infiltration Ore Formation (Nedra, Moscow, 1993) [in Russian].

    Google Scholar 

  28. V. I. Malkovsky, A. A. Pek, A. P. Aleshin, and V. I. Velichkin, “Estimation of the Time of Magma Chamber Solidification beneath the Strel’tsovka Caldera and Its Effect on the Nonstationary Temperature Distribution in the Upper Crust, the Eastern Transbaikal Region, Russia,” Geol. Rudn. Mestorozhd. 50(3), 217–224 (2008) [Geol. Ore Deposits 50 (3), 192–198 (2008)].

    Google Scholar 

  29. G. A. Mashkovtsev, Ya. M. Kislyakov, A. K. Miguta, et al., “Prerequisites of the Formation of Large hydrothermal and Exogenic Epigenetic Uranium Deposits,” Geol. Rudn. Mestorozhd. 37(6) 467–482 (1995).

    Google Scholar 

  30. G. A. Mashkovtsev, Ya. M. Kislyakov, A. K. Miguta, et al., “Economic and Genetic Types of Uranium Deposits,” Otech. Geol., No. 4, 13–20 (1998).

  31. G. B. Naumov, “Migration of Uranium in Hydrothermal Solutions,” Geol. Rudn. Mestorozhd. 40(4), 307–325 (1998) [Geol. Ore Deposits 40 (4), (1998).

    Google Scholar 

  32. C. Peiffert, C. Nguyen-Trung, and M. Cuney, “Uranium in Granitic Magmas: Part 2. Experimental Determination of Uranium Solubility and Fluid-Melt Partition Coefficients in Uranium Oxide-HaplograniteH2O-NaX (X = Cl, F) System at 770°C, 2 Kbar,” Geochim. Cosmochim. Acta 60(9), 1515–1529 (1996).

    Article  Google Scholar 

  33. A. A. Pek and G. O. Piloyan, “Estimation of the Depth of Hydrothermal Solution Source from the Data of Mineralogical Thermobarometry,” Geol. Rudn. Mestorozhd. 17(4), 68–82 (1975).

    Google Scholar 

  34. A. A. Pek and V. I. Malkovsky, “Dynamics of Ore Deposition on a Mobile Temperature Barrier by Formation of Gold Deposits in the Archean Greenstone Belts,” in New Lines in the Study of Massive Sulfide Deposits (NGTU, Novocherkassk, 1997), pp. 150–162 [in Russian].

    Google Scholar 

  35. A. A. Pek, V. I. Malkovsky, and Yu. G. Safonov, “Continuum of Hydrothermal Goldfields Related to the Deeply Penetrating Fault Zones: A Hydrothermal System with Forced Convection of Fluids,” in Problems of Ore Geology, Petrology, Mineralogy, and Geochemistry (IGEM, Moscow, 2004), pp. 130–147 [in Russian].

    Google Scholar 

  36. A. I. Perelman, Geochemistry of Elements in Supergene Zone (Nedra, Moscow, 1972) [in Russian].

    Google Scholar 

  37. J. P. Raffensperger and G. Garven, “The Formation of Unconformity-Type Uranium Ore Deposits. 1. Coupled Groundwater Flow and Heat Transport Modeling,” Am. J. Sci. 295, 581–636 (1995a).

    Google Scholar 

  38. J. R. Raffensrerger and G. Garven, “The Formation of Unconformity-Type Uranium Ore Deposits. 2. Coupling Hydrogeochemical Modeling,” Amer. J. Sci 295, 639–696 (1995b).

    Google Scholar 

  39. A. F. Redkin, I. P. Ivanov, and B. I. Omel’yanenko, “Solubility of Uranium Dioxide in Acid Chloride Solutions at 400–600°C and 1 kbar,” Dokl. Akad. Nauk SSSR 299(3), 726–733 (1988).

    Google Scholar 

  40. S. L. Rivkin and A. A. Aleksandrov, Thermodynamic Properties of Water and Water Vapor (Energiya, Moscow, 1975) [in Russian].

    Google Scholar 

  41. P. J. Rouch, Computational Fluid Dynamics (Hermosa, Albuquerqe, 1976; Mir, Moscow, 1980).

    Google Scholar 

  42. Thermal Regime of Subsurface in the USSR (Nauka, Moscow, 1970) [in Russian].

  43. V. E. Vishnyakov, “Structural and Hydrodynamic Conditions of the Deposit Formation in the Strel’tsovka Ore Field,” in Proceeding on Geology of Uranium Deposits (VIMS, Moscow, 1985), No. 93, pp. 4–11 [in Russian].

    Google Scholar 

  44. F. I. Wolfson, L. P. Ishchukova, V. E. Vishnyakov, et al., “Localization Conditions of the Uranium Ore Mineralization in the Bedded Sequences of the Upper Structural Stage,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 11, 114–134 (1967).

  45. V. A. Zharikov, I. P. Ivanov, B. I. Omel’yanenko, et al., “Experimental Study of Uraninite Solubility in Model granitic Melts and Solutions at High Parameters,” Geol. Rudn. Mestorozhd. 29(4), 3–12 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Malkovsky.

Additional information

Original Russian Text © V.I. Malkovsky, A.A. Pek, A.P. Aleshin, V.I. Velichkin, 2010, published in Geologiya Rudnykh Mestorozhdenii, 2010, Vol. 52, No. 1, pp. 17–35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malkovsky, V.I., Pek, A.A., Aleshin, A.P. et al. Model of heat and mass transfer by fluid during formation of Mo-U deposits in the Strel’tsovka ore field, eastern Transbaikal region: Forced convection of solutions generated by a deep source. Geol. Ore Deposits 52, 14–31 (2010). https://doi.org/10.1134/S1075701510010034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701510010034

Keywords

Navigation