Skip to main content
Log in

Main aspects of the theory of ore-bearing weathering mantles in the 21st century

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The theory of ore-bearing weathering mantles (WM) was developed at the Institute of Geological Sciences, USSR Academy of Sciences (currently the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences) in the 1930s. I.I. Ginzburg was an originator of this theory. The extensive new data on the bauxite-, Ni-, Au-, REE-bearing and other rare-metal WM has led to the development of a general theory of exogenic ore deposits, which has been confirmed by forecasting, prospecting, and exploration of solid mineral resources. On considering the current status of the WM theory based on the results of precision research methods (XRD, IRS, EPR spectroscopy, DTA, electron microscopy, etc.), the main aspects determining its advance can be pointed out: (1) physicochemical simulation of WM formation; (2) identification and study of nanominerals in WM; (3) study of the contribution of organic matter to weathering; and (4) use of WM as indicators of climatic change in the Earth’s history. As is presently established, WM are natural chemical reactors of nanoparticles of various minerals. The progress in nanomineralogy of WM will facilitate the choice of rational methods of mining and recovery of valuable components. As has been proved by electron microscopy, fossilized microbial communities, biofilms, and cyanobacterial mats occur in almost all WM. The importance of studying mutual relations of inorganic and organic substances of WM in more detail is evident. Development of the idea of using WM as indicators of paleoclimate will provide insights into global changes in the environment and complement the results obtained by traditional paleoclimatic methods. This aspect is especially topical in connection with widely discussed problem of global climatic warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adolphi, P., Storr, M., Zwahr, H., et al., Speciation of Alkaline, Alkaline Earth and Rare Earth Elements in Kaolins, in Proceedings of the 7th Euroclay Conference, Dresden’91, Ernst-Moritz-Arndt Universität Greipswald, 1991, vol. 1, pp. 7–12.

    Google Scholar 

  • Akhmet’ev, M.A., Oligocene and Miocene Floras in the Southern Far East of the USSR As Indicators of Climatic Setting, Izv. Akad. Nauk SSSR, Ser. Geol., 1974, no. 4, pp. 134–144.

  • Akhmet’ev, M.A., Volobueva, V.I., Gladenkov, Yu.B., and Sheludchenko, S.D., Late Paleogene Cooling in the East of the USSR from Paleobotanic Data, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 1986, vol. 61, no. 4, pp. 87–100.

    Google Scholar 

  • Arias, M., Barral, M.T., and Diaz-Fierros, F., Effects of Iron and Aluminium Oxides on the Colloidal and Surface Properties of Kaolin, Clays Clay Miner., 1995, vol. 43, no. 4, pp. 406–416.

    Article  Google Scholar 

  • Askhabov, A.M., Contemporary Invasion into the “World of By-passed Quantities,” in Mineralogicheskaya interventsiya v mikroi nanomir (Mineralogical Intervention in the Micro- and Nanoworld), Syktyvkar, 2009, pp. 9–10.

  • Bakterial’naya paleontologiya (Bacterial Paleontology), Moscow: Paleontol. Inst., 2002.

  • Balan, E., Allard, Th., Boizot, B., et.al., Quantitative Measurement of Paramagnetic Fe3+ in Kaolinite, Clays Clay Miner., 2000, vol. 48, no. 4, pp. 439–445.

    Article  Google Scholar 

  • Bardossy, G. and Aleva, G.J.J., Lateritic Bauxites, Budapest: Akademiai Kiado, 1990.

    Google Scholar 

  • Berner, R.A., Chemical Weathering and Its Effect on Atmospheric CO2 and Climate, Rev. Mineral, 1995, vol. 31, pp. 561–583.

    Google Scholar 

  • Berner, R.A., Weathering, Plants and the Long-Term Carbon Cycle, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 3225–3231.

    Article  Google Scholar 

  • Bortnikov, N.S., Mineeva, R.M., Novikov, V.M., and Soboleva, S.V., Dimensional Effect on Crystallomorphic Properties of Kaolinite from the Data of SEM and EPR (Zuravliny Log Deposit, South Urals, Dokl. Earth Sci., 2011, vol. 419, no. 2.

  • Brady, P.V., The Effect of Silicate Weathering on Global Temperature and Atmospheric CO2, J. Geophys. Res., 1991, vol. 96, pp. 101–106.

    Article  Google Scholar 

  • Bugel’skii, Yu.Yu., K voprosu o termodinamike gipergennoi migratsii rudnykh komponentov (Thermodynamics of Supergene Migration of Ore Components), Moscow: Nedra, 1970.

    Google Scholar 

  • Bugel’sky, Yu.Yu., Lyalikova, N.N., and Lebedeva, E.V., Possibility of Nitric-Acid Leaching of Rocks, in Gidrogeokhimicheskie metody poiskov rudnykh mestorozhdenii (Hydrochemical Methods of Prospecting for Ore Deposits), Novosibirsk: Nauka, 1982, pp. 47–50.

    Google Scholar 

  • Bugel’sky, Yu.Yu., Vitovskaya, I.V., Nikitina, A.P., et al., Ekzogennye rudoobrazuyushchie sistemy kor vyvetrivaniya (Exogenic Ore-Forming Systems of Weathering Mantles), Moscow: Nauka, 1990.

    Google Scholar 

  • Chukhrov, F.V., Kolloidy v zemnoi kore (Colloids in the Earth’s Crust), Moscow: Akad. Nauk SSSR, 1955.

    Google Scholar 

  • Chukhrov, F.V., Ermilova, L.P., Gorshkov, A.I., et al., Gipergennye okisly zheleza (Supergene Iron Oxides), Moscow: Nauka, 1975.

    Google Scholar 

  • Chukhrov, F.V., Gorshkov, A.I., Tyuryukanov, A.N., et al., Geochemistry and Mineralogy of Manganese and Iron in Recent Suoergene Products, Izv. Akad. Nauk SSSR, Ser. Geol., 1980, no. 7, pp. 5–24.

  • Clarige, Q.Q.L. and Campbell, J.B., Mineral Transformation During the Weathering of Dolerite Under Cold Arid Conditions in Antarctica, New Zealand J. Geophys., 1984, vol. 27, no. 4, pp. 537–546.

    Google Scholar 

  • Delineau, Th., Allard, Th., Muller, J.-P., et al., FTIR Reflectance vs. EPR Studies of Structural Iron in Kaolinites, Clays Clay Miner., 1994, vol. 42, no. 3, pp. 308–320.

    Article  Google Scholar 

  • Dimon, E.I., Karpov, I.K., and Makarov, V.I., Modelirovanie na EVM gipergennykh protsessov (Computer Modeling of Supergene Processes), Novosibirsk: Nauka, 1982.

    Google Scholar 

  • Dong, H., Jaisi, D.P., and Kim, J., Microbe-Clay Mineral Interactions, Am. Mineral., 2009, vol. 94, no. 11, pp. 1505–1519.

    Article  Google Scholar 

  • Feenstra, T.P. and de Bruyn, P.L., The Ostwald Rule of Stages in Precipitation from Highly Supersaturated Solution: a Model and Its Application to the Formation of the Nonstoichiometric Amorphous Calcium Phosphate Precursor Phase, J. Colloid Interface Sci, 1981, vol. 84, pp. 66–72.

    Article  Google Scholar 

  • Foster, R.L., Gold Deposits at Slate Creek, Northern Nye County, Nevada, Econ. Geol., 1970, vol. 66, no. 8, pp. 965–966.

    Google Scholar 

  • Fradkina, A.F. and Laukhin, S.A., Paleogene and Neogene Landscapes in Northeastern Asia, Dokl. Akad. Nauk, 1995, vol. 345, no. 4, pp. 523–525.

    Google Scholar 

  • Frakes, L.A., Climates Throughout Geologic Time, Amsterdam: Elsevier, 1979.

    Google Scholar 

  • Gaite, J.-M., Ermakoff, P., Allard, Th., and Muller, J.-P., Paramagnetic Fe3+; a Sensitive Probe for Disorder in Kaolinite, Clays Clay Miner., 1997, vol. 45, no. 4, pp. 496–505.

    Article  Google Scholar 

  • Ginzburg, I.I., Drevnyaya kora vyvetrivaniya na ul’traosnovnykh porodakh Urala (Ancient Weathering Mantle on Ultramafic Rocks of the Urals), Moscow: GIN AN SSSR, 1947, part I.

    Google Scholar 

  • Gislason, S.R., Oelkers, E.H., Eiriksdottiz, E.S., et al., Direct Evidence of the Feedback between Climate and Weathering, Earth Planet. Sci. Lett., 2009, vol. 277, pp. 213–222.

    Article  Google Scholar 

  • Glazovskaya, M.A., Weathering and Initial Soil Formation in Antarctica, Nauchn. Dokl. Vyssh. Shkoly, Geol.-Geogr. Nauki, 1958, no. 1, pp. 65–76.

  • Gorbachev, B.F., Kornilov, A.V., and Gonyukh, V.M., Complex Assessment of Kaoline Quality, Razved. Okhr. Nedr, 2000, no. 9, pp. 38–40.

  • Hassellov, M. and Kammer, F., Iron Oxides As Geochemical Nanovectors for Metal Transport in Soil-River Systems, Elements, 2008, no. 4, pp. 401–406.

  • Hong, H., Min, X., and Fu, Zh., Study on Adsorption of Submicrometer Gold on Kaolinite by Quantum Chemistry Calculations, Am. Mineral., 2002, vol. 87, no. 1, pp. 1–4.

    Google Scholar 

  • Kanket, W., Suddhiprakam, A., Kheoruenromne, Irb., and Gilkes, R.J.., Chemical and Crystallographic Properties of Kaolin from Ultisols in Thailand, Clays Clay Miner., 2005, vol. 53, no. 5, pp. 478–489.

    Article  Google Scholar 

  • Karpoff, A.M., The Claystone Layer Between Two Basalt Flows in Hole 432: An Argument for the Emergence of Nintoku Seamount, DSDP Initial Rep., 1980, vol. 55, pp. 707–710.

    Google Scholar 

  • Kashik, S.A. and Karpov, I.K., Fiziko-khimicheskaya teoriya obrazovaniya zonal’nosti v korakh vyvetrivaniya (Physicochemical Theory of Zoning Formation in Weathering Mantles), Novosibirsk: Nauka, 1978.

    Google Scholar 

  • Kinniburgh, D.G., Jackson, M.L., and Syers, J.K., Adsorption of Alkaline Earth and Heavy Metal Cations by Hydrous Oxides Gels of Iron and Aluminium, Soil Sci. Soc. Amer. J., 1976, vol. 40, no. 5, pp. 796–799.

    Article  Google Scholar 

  • Kulish, E.A., Komov, I.L., and Pokalyuk, V.V., Mestorozhdeniya rud metallov i ikh kompleksnoe ispol’zovanie (Ore Deposits and Their Complex Use), Kiev, 2008.

  • Lifshitz, I.M. and Slyozov, V.V., The Kinetics of Precipitation from Supersaturated Solid Solutions, J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  • Lisitsina, N.A., Vynos khimicheskikh elementov pri vyvetrivanii osnovnykh porod (Removal of Chemical Elements by Weathering of Basic Rocks), Moscow: Nauka, 1973.

    Google Scholar 

  • Lombardi, G., Russe, J.D., and Keller, W.D., Sompositional and Structural Variation in the Size Fractions of a Sedimentary and a Hydrothermal Kaolin, Clays Clay Miner., 1987, vol. 35, pp. 321–335.

    Article  Google Scholar 

  • Müller, J.-P., Manceau, A., Calas, G., et al., Crystal Chemistry of Kaolinite and Fe-Mn Oxides: Relation with Formation Conditions of Low Temperature Systems, Am. J. Sci., 1995, vol. 295, pp. 1115–1155.

    Article  Google Scholar 

  • Maslennikova, G.N., Kolyshkina, N.V., Shamrikov, A.S, and Stafeeva, Z.V., Concentrated Kaolin from the Zhuravliny Log Deposit for Veramic Production, Steklo Keram., 2002, no. 1, pp. 15–19.

  • Metody rekonstruktsii paleoklimatov (Methods of Paleoclimate Reconstruction), Moscow: Nauka, 1985.

  • Moiseenko, V.G., Problems of Nanogeochemistry of Gold, in Nanogeochemistry of Gold, Vladivostok, 2008, pp. 6–30.

  • Murakami, T., Sato, T., Ohnuki, T., and Isobe, H., Field Evidence for Uranium Nanocrystallization and Its Implications for Uranium Transport, Chem. Geol., 2005, vol. 221, no. 1/2, pp. 1115–1155.

    Google Scholar 

  • Navrotsky, A., Materials and Nanotechnology, J. Franklin Institute, 2003, vol. 340, pp. 263–268.

    Article  Google Scholar 

  • Nilsen T.H. and Kerr D.R. Paleoclimatic and Paleogeographic Implications of Lower Tertiary Laterite Latosol on the Iceland-Faeroe Ridge, North Atlantic Region, Geol. Mag., 1978, vol. 115, no. 3, pp. 153–182.

    Article  Google Scholar 

  • Noack, Y., Emmermann, R., and Hubbertten, H.W., Alteration in Site 501 (Leg 68) and Site 504 (Leg 69) Basalts: Preliminary Results, DSDP Initial Rep., Leg 69, 1979, pp. 497–508.

  • Novikov, V.M., Ivanenko, V.V., and Karpenko, M.I., Izotopnoe datirovanie rudonosnykh kor vyvetrivaniya, in Izotopnoe datirovanie endogennykh rudnykh formatsii (Isotopic Dating of Endogenic Ore Deposits), Leningrad, 1990, p. 35.

  • Novikov, V.M., Ivanenko, V.V., and Karpenko, M.I., K-Ar Age and Paleoclimatic Formation Conditions of Weathering of Basalts in the Far East, in Kora vyvetrivaniya (Weathering Mantle), Moscow: Nauka, 1991, issue 20, pp. 61–65.

    Google Scholar 

  • Novikov, V.M., Sharkov, E.V., Chernyshev, I.V., et al., Geochronology of Weathering Mantles on Plateau Basalts of Syria and Evolution of Paleoclimate of This Region over the Last 20 Ma, Stratigr. Geol. Korrelyatsiya, 1993, vol. 1, no. 6, pp. 66–74.

    Google Scholar 

  • Novikov, V.M., Shkol’nik, E.L., Zhegallo, E.A., and Orleansky, V.K., Formation of Supergene Ferromanganese Nodules, Tikhookean. Geol., 2008, vol. 27, no. 5, pp. 53–64.

    Google Scholar 

  • Novikov, V., Bortnikov, N., Krupskaya, V., et al. Relation between Kaolinite Properties and Particle Size, in The 2nd Intern. Workshop on Layered Materials: Structure and Properties, Vercelli, 2008, pp. 189–190.

  • Oliva, P. and Viers, J., Dupre B, The Effect of Organic Matter on Chemical Weathering; Study of a Small Tropical Watershed; Nsimi-Zoelete Site, Cameroon, Geochim. Cosmochim. Acta, 1999, vol. 63, nos. 23/24, pp. 4013–4035.

    Article  Google Scholar 

  • Ostwald, V., Mir oboidennykh velichin (World of By-passed Quantities), Leningrad: Vsekhimprom VSNKh SSSR, 1930.

    Google Scholar 

  • Parmon, V.N., Thermodynamic Analysis of Nanoparticle Size Effect on Adsorption Equilibrium and Rate of Heterogeneous Catalytic Processes, Dokl. Akad. Nauk, 2007, vol. 413, no. 1, pp. 53–59.

    Google Scholar 

  • Parra, M., Delmont, P., and Dumon, J.C., Mineralogy and Origin of Tertiary Interbasaltic Clays from the Faeroe Islands, North-Eastern Atlantic, Clay Clay Mineral., 1987, vol. 22, no. 1, pp. 63–82.

    Article  Google Scholar 

  • Pinevich, A.V., Mikrobiologiya zheleza i margantsa (Microbiology of Iron and Manganese), St. Petersburg: St. Petersburg Univ., 2005.

    Google Scholar 

  • Plastinina, M.A. and Kukovsky, E.G, Degree of Perfection of Kaolinite Structure from the Data of Roentgenography and IR Spectroscopy, Mineral. Zh., 1979, vol. 1, no. 2, pp. 67–72.

    Google Scholar 

  • Plyusnina, I.I., Fiziko-Khimicheskie Osobennosti Evolyutsii Dispersnykh Sistem v Korakh Vyvetrivaniya, v Sedimentoi Litogeneze (Physicochemical Evolution of Dispersed Systems in Weathering Mantles, Sedimento- and Lithogenesis, Arkhangel’sk: Pomorsky Univ., 2004.

    Google Scholar 

  • Rozanov, A.Yu., Fossil Bacteria, Sedimentogenesis, and Early Stages of Evolution of the Biosphere, Paleontol. Zh., 2003, no. 5, pp. 41–49.

  • Sarda, C., Mathieu, F., Vajpei, A., and Rousset, A., Size- and Surface-Dependence of Enthalpy of Oxidation of Submicronic Magnetites, J. Therm. Analysis, 1987, vol. 32, no. 3, pp. 865–873.

    Article  Google Scholar 

  • Savko, A.D., Bugel’sky, Yu.Yu., Novikov, V.M., Slukin, A.D., and Shevyrev, L.T., Kory vyvetrivaniya i svyazannye s nimi poleznye iskopaemye (Weathering Mantles and Related Mineral Resources), Moscow-Voronezh: Istoki, 2007.

    Google Scholar 

  • Schoonheydt, R.A., Smectite-Type Clay Minerals As Nanomaterials, Clays Clay Miner., 2002, vol. 50, no. 4, pp. 411–420.

    Article  Google Scholar 

  • Shkol’nik, E.L., Zhegallo, E.A., and Yeganov, E.A., Microorganisms and Exogenic Ore Formation from the Study of Phosphorites, Bauxites, and Manganese Ores, Mezhdunar. konf. “Bakterial’naya paleontologiya,” Tez. dokl. (Abstracts of International Conference on Bacterial Paleontology), Moscow, 2002, pp. 90–92.

  • Shkol’nik, E.L., Zhegallo, E.A., Bogatyrev, B.A., et al., Biomorfnye struktury v boksitakh (po rezul’tatam elektronnomikroskopicheskogo izucheniya) (Biomorphic Structures in Bauxites: The Results of Studies Using Electron Microscope), Moscow: Eslan, 2004.

    Google Scholar 

  • Shvartsev, S.L., Ryzhenko, B.N., Alekseev, V.A., et al., Geologicheskaya evolyutsiya i samoorganizatsiya sistemy voda — poroda (Geological Evolution and Self-Organization of the Water-Rock System), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2007.

    Google Scholar 

  • Sifferman, G. and Millot, G., Equatorial and Tropical Weathering of Recent Basalts from Cameroun: Allophanes, Halloysite, Metahalloysite, Kaolinite and Gibbsite, Intern. Clay Conf., Jerusalem, 1969, vol. 1, pp. 417–430.

    Google Scholar 

  • Singer, A., The Paleociimatic Interpretation of Clay Minerals in Soils and Weathering Profiles, Earth. Sci. Rev, 1980, vol. 15, pp. 303–326.

    Article  Google Scholar 

  • Sinitsin, V.M., Klimat laterita i boksita (Climate of Laterite and Bauxite), Leningrad: Nedra, 1980.

    Google Scholar 

  • Slukin, A.D. and Tsimlyanskaya, L.S., Cu-Mg-Bearing Gibbsite — The First Finding in the Nature, Dokl. Akad. Nauk SSSR, 1989, vol. 304, no. 4, pp. 952–956.

    Google Scholar 

  • Slukin, A.D., Kireev, F.A., Belyaev, V.I., and Zvezdinskaya, L.V., Some Results of the Study of Lateritic Products of Weathering Using Scanning Electron Microscopy, in Kora vyvetrivaniya (Weathering Mantle), Moscow: Nauka, 1986, issue 19, pp. 86–90.

    Google Scholar 

  • Slukin, A.D., Lateritized Carbonatites and Associated Sedimentary Kaoline and Bauxite Enriched in REE, Nb, Ti, and other Elements, the Chadobets Rise, Siberian Platform, in Prikladnaya geokhimiya (Applied Geochemistry), Moscow: IMGRE, 2005, issue 7, book 2, pp. 206–221.

    Google Scholar 

  • Solotchina, E.P., Strukturnyi tipomorfizm glinistykh mineralov osadochnykh razrezov i kor vyvetrivaniya (Structural Typomorphism of Clay Minerals in Sedimentary Sections and Zones of Weathering), Novosibirsk: Geo, 2009.

    Google Scholar 

  • Strakhov, N.M., Osnovy teorii litogeneza (Theoretical Principles of Lithogenesis), Moscow: Akad. Nauk SSSR, 1962, vol. 1.

    Google Scholar 

  • Takahashi, Y., Chatellier, X., Hattory, K.H., et al., Adsorption of Rare Earth Elements Onto Bacterial Cell Walls and Its Implication for REE Sorption Onto Natural Microbial Mats, Chem. Geol., 2005, vol. 219, no 1/4, pp. 53–67.

    Article  Google Scholar 

  • Tardy, Y. and Roquin, C., Derive des continents. Paleoclimates et alterations tropicales, Orleans: BRGM, 1998.

    Google Scholar 

  • Tardy, Y., Kolbisek, B., and Paquet, H., Mineralogical Composition and Geographical Distribution of African and Brazilian Periatlantic Laterites. The Influence of Continental Drift and Tropical Palaeoclimates during the Past 150 Million Years and Implications for India and Australia, J. Afr. Earth Sci, 1991, no. 12, pp. 283–295.

  • Tazaki, K., Observation of Primitive Clay Precursors during Microcline Weathering, Contrib. Mineral. Petrol., 1986, vol. 92, no. 1. pp. 86–88.

    Article  Google Scholar 

  • Tsuzuki, Y., Solubility Diagrams for Explaining Zone Sequences in Bauxite, Kaolin and Pyrophyllite-Diaspore Deposits, Clays Clay Miner., 1976, vol. 24, pp. 297–302.

    Article  Google Scholar 

  • Van Santen, R.A., The Ostwald Step Rule, J. Phys. Chem., 1984, vol. 88, pp. 5768–5769.

    Article  Google Scholar 

  • Vernadskii, V.I., Biosfera. Ocherki 1, 2 (Biosphere. Essays 1, 2), Leningrad: Nauchno-tekhn. izd-vo VSNKh, 1926.

    Google Scholar 

  • Vernadsky, V.I., Biosfera (Biosphere), Moscow: Mysl, 1967.

    Google Scholar 

  • Vernadsky, V.I., Izbrannye sochineniya. T.1. Ocherki geokhimii (Selected Works, vol. 1: Essay of Geochemistry), Moscow: Akad. Nauk SSSR, 1954.

    Google Scholar 

  • Vernadsky, V.I., K probleme razlozheniya kaolinov organizmami (Decomposition of Kaolins by Organisms), Moscow: Akad. Nauk SSSR, 1960.

    Google Scholar 

  • Vernadsky, V.I., Living Substance and Kaolin Alyumosilicates, in Ocherki geokhimii (Essays of Geochemistry), Moscow: Nauka, 1983, pp. 161–167.

    Google Scholar 

  • Violette, A., Goddens, Y., Marechal, J.-C., et al., Modelling the Chemical Weathering Fluxes at the Watershed Scale in the Tropics (Mule Hole, South India): Relative Contribution of the Smectite/Kaolinite Assemblage Versus Primary Minerals, Chem. Geol., 2010, vol. 277, no. 1/2, pp. 42–60.

    Article  Google Scholar 

  • Voorhees, P.W., The Theory of Ostwald Ripening, J. Stat. Physics, 1985, vol. 38, pp. 231–252.

    Article  Google Scholar 

  • Wightman, P.G. and Fein, J.B., Iron Adsorption by Bacillus Subtilus Bacterial Cell Walls, Chem. Geol., 2005, vol. 216, no. 3/4, pp. 177–189.

    Article  Google Scholar 

  • Yushkin, N.P., Micromineralogy and Nanomineralogy: Origination, Development, Perspective, Transition through Nanoboom, in Mineralogicheskaya interventsiya v mikroi nanomir (Mineralogical Intervention into Micro- and Nanoworld), Syktyvkar: Geoprint, 2009, pp. 78–80.

    Google Scholar 

  • Zang, W. and Fyfe, W.S., A Three-Stage Genetic Model for the Igarape Bahia Lateritic Gold Deposit, Carajas, Brazil, Econ. Geol., 1993, vol. 88, no. 7, pp. 1768–1779.

    Article  Google Scholar 

  • Zhmodik, S.M., Anoshin, G.N., Sobolev, N.V., et al., Role of Nanoparticles in Geological Processes of Dispersion and Concentration of Noble and Rare Elements, in Nauka i nanotekhnologii (Science and Nanotechnology), Novosibirsk, 2007, pp. 209–226.

  • Zhu, C., Veblen, D.R., Blum, A.E., and Chipera, S.J., Naturally Weathered Feldspar Surfaces in the Navajo Sandstone Aquifer Black Mesa, Arizona: Electron Microscopic Characterization, Geochim. Cosmochim. Acta, 2006, vol. 70, no. 19, pp. 4600–4616.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.S. Bortnikov, Yu.Yu. Bugel’sky, A.D. Slukin, V.M. Novikov, G.O. Piloyan, 2011, published in Geologiya Rudnykh Mestorozhdenii, 2011, Vol. 53, No. 6, pp. 491–505.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bortnikov, N.S., Bugel’sky, Y.Y., Slukin, A.D. et al. Main aspects of the theory of ore-bearing weathering mantles in the 21st century. Geol. Ore Deposits 53, 435–446 (2011). https://doi.org/10.1134/S1075701511060055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701511060055

Keywords

Navigation