Skip to main content
Log in

Physicochemical formation conditions of natural diamond deduced from experimental study of the eclogite-carbonatite-sulfide-diamond system

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

A diagram of the syngenesis of diamond, silicate, carbonate, and sulfide minerals and melts is compiled based on experimental data on phase relations in the heterogeneous eclogite-carbonate-sulfidediamond system at P = 7 GPa. Evidence is provided that silicate and carbonate minerals are paragenetic, whereas sulfides are xenogenic with respect to diamond. Diamond and paragenetic phases are formed in completely miscible carbonate-silicate growth melts with dissolved elemental carbon. Coherent data of physicochemical experiment and mineralogy of primary inclusions in natural diamonds allows us to prove the mantle-carbonatite theory of diamond origin. The genetic classification of primary inclusions in natural diamonds is based on this theory. The phase diagrams of syngenesis are applicable to interpretation of diamond and syngenetic minerals formation in natural magma sources. They ascertain physicochemical mechanism of natural diamond formation and conditions of entrapment of paragenetic and xenogenic mineral phases by growing diamonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akailshi, M., Effect of Na2O and H2O Addition to SiO2 on the Synthesis of Diamond from Graphite, Proceedings of the 3rd NIRIM Intern. Symposium on Advanced Materials, Tsukuba, Ibaraki, Japan, 1996, pp. 75–80.

  • Akaishi, M., Kumar, M.S.D., Kanda, H., and Yamaoka, S., Formation Process of Diamond from Supercritical H2O-CO2 Fluid Under High Pressure and High-Temperature Conditions, Diam. Relat. Mater., 2000, no. 9, pp. 1945–1950.

  • Arima, M., Nakayama, K., Akaishi, M., et al., Crystallization of Diamond from Silicate Melts of Kimberlite Composition in High-Pressure High-Temperature Experiments, Geology, 1993, vol. 21, pp. 968–970.

    Article  Google Scholar 

  • Bobrov, A.V. and Litvin, Yu.A., Peridotite-Eclogite-Carbonatite Systems at 7.0–8.5 GPa: Concentration Barrier of Nucleation of Diamond and Syngenesis of Silicate and Carbonate Inclusions Therein, Geol. Geofiz., 2009, vol. 50, no. 12, pp. 1571–1587.

    Google Scholar 

  • Bulanova, G.P., Novgorodov, P.G., and Pavlova, L.A., A New Finding of Melt Inclusion from the Mir Pipe, Geokhimiya, 1988, vol. 26, no. 5, pp. 756–764.

    Google Scholar 

  • Bundy, F.P., Hall, H.T., Strong, H.M., and Wentorf, R.H., Man-Made Diamond, Nature, 1955, vol. 176, pp. 51–54.

    Article  Google Scholar 

  • Bundy, F.P., Direct Conversion of Graphite to Diamond in Static Pressure Apparatus, J. Chem. Phys., 1963, vol. 38, no. 3, pp. 631–643.

    Article  Google Scholar 

  • Von Eckerman, H.A., Comparison of Swedish, African and Russian Kimberlites, in Ultramafic and Related Rocks, New York: Wiley, 1967, pp. 302–312.

    Google Scholar 

  • Efimova, E.S., Sobolev, N.V., and Pospelova, L.N., Sulfide Inclusions in Diamonds and Their Parageneses, Zap. Vses. Min. Ob-va, 1983, vol. 112, no. 3, pp. 300–310.

    Google Scholar 

  • Fursenko, B.A., Goryainov, S.B., and Sobolev, N.V., High-Pressure Coesite Inclusions in Diamond: Raman Spectroscopy, Dokl. Earth Sci., 2001, vol. 379A, no. 6, pp. 749–753.

    Google Scholar 

  • Glinnemann, J., Kusaka, K., and Harris, J.W., Oriented Graphite Single-Crystal Inclusions in Diamond, Z. Kristallogr., 2003, vol. 218, pp. 733–739.

    Article  Google Scholar 

  • Haggerty, S.E., Diamond Genesis in a Multiconstrained Model, Nature, 1986, vol. 320, pp. 34–38.

    Article  Google Scholar 

  • Harris, J.W., Inclusions in Diamond, in The Properties of Diamond, London: Academic Press, 1979, pp. 555–591.

    Google Scholar 

  • Klein-BenDavid O., Israeli, E.S., Hauri, E., and Navon, O., Fluid Inclusions in Diamonds from the Diavik Mine, Canada and Evolution of Diamond-Bearing Fluids, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 723–744.

    Article  Google Scholar 

  • Israeli, E.S., Harris, J.W., and Navon, O., Brine Inclusions in Diamonds: a New Upper Mantle Fluid, Earth Planet. Sci. Lett., 2001, vol. 187, pp. 323–332.

    Article  Google Scholar 

  • Litvin, Yu.A., Mechanism of Diamond Formation in the Metal-Carbon Systems, Izv. Akad. Nauk SSSR, Ser. Neorganich. Khim., 1968, vol. 4, no. 2, pp. 175–182.

    Google Scholar 

  • Litvin, Yu.A., Physicochemical Formation Conditions of Natural Diamond and Heterogeneous Substance of Primary Inclusions Therein, In Materialy XI s″ezda Ross. Mineral. ob-va (Proceedings of the 11th Congress of the Russian Mineralogical Society), St. Petersburg, 2010, pp. 77–78 (www.minsoc.ru/2010-1-30-0).

  • Litvin, Yu.A., High-Pressure Mineralogy of Diamond Genesis, Geol. Soc. Amer. Spec. Paper, 2007, vol. 421, pp. 83–103.

    Google Scholar 

  • Litvin, Yu.A., Fiziko-khimicheskie issledovaniya plavleniya glubinnogo veshchestva Zemli (Physicochemical Study of Melting of Deep Matter of the Earth), Moscow: Nauka, 1991.

    Google Scholar 

  • Litvin, Yu.A., Hot Spots of the Mantle and Experiment up to 10 GPa: Alkaline Reactions, Carbonation of the Lithosphere, and New Diamond-Forming Systems, Geol. Geofiz., 1998, vol. 39, no. 12, pp. 1772–1779.

    Google Scholar 

  • Litvin, Yu.A. and Zharikov, V.A., Experimental Modeling of Diamond Genesis: Diamond Crystallization in Multicomponent Carbonate-Silicate Melts at 5–7 GPa and 1200–1570°C, Dokl. Earth Sci., 2000, vol. 373, no. 5, pp. 867–870.

    Google Scholar 

  • Litvin, Yu.A., Butvina, V.G., Bobrov, A.V., and Zharikov, V.A., The First Synthesis of Diamond in Sulfide-Carbon Systems: The Role of Sulfides in Diamond Genesis, Dokl. Earth Sci., 2002, vol. 382, no. 1, pp. 40–43.

    Google Scholar 

  • Litvin, Yu.A. and Butvina, V.G., Diamond-Forming Media in the System Eclogite-Carbonatite-Sulfide-Carbon: Experiments at 6.0–8.5 GPa Petrology, 2004, vol. 12, no. 4, pp. 377–387.

    Google Scholar 

  • Litvin, Yu.A. and Spivak, A.V., Growth of Diamond Crystals at 5.5–8.5 GPa in Carbonate-carbonic Melts-Solutions As Chemical Counterparts of Natural Diamond-Forming Media, Materialovedenie, 2004, no. 3, PP. 27–34.

  • Litvin, Yu.A., Experiments in Solution of Problems Concerning Genesis of Diamond, Zap. Ross. Miner. Ob-Va, 2007, vol. 136, no. 7, pp. 138–158.

    Google Scholar 

  • Litvin, Yu.A., Litvin, V.Yu., and Kadik, A.A., Experimental Characterization of Diamond Crystallization in Melts of Mantle Silicate-Carbonate-Carbon Systems at 7.0–8.5 GPa, Geochem. Int., 2008, vol. 46, no. 6, pp. 579–602.

    Article  Google Scholar 

  • Litvin, Yu.A., Experimental Study of Physicochemical Formation Conditions of Diamond in the Mantle Matter, Geol. Geofiz., 2009, vol. 50, no. 12, pp. 1530–1546.

    Google Scholar 

  • Litvin, Yu.A., Butvina, V.G., Bobrov, A.V., et al., Physicochemical Experiment in the Study of Magmatic Evolution of the Multicomponent Mantle and Origin of Diamond, in Mater. konfer., posvyashchennoi 110-letiyu so dnya rozhdeniya akad. D.S. Korzhinskogo (Proceedings of Conference Dedicated to the Centenary of D.S. Korzhinsky), Moscow: IGEM RAN, 2009, pp. 241–245.

    Google Scholar 

  • Logvinova, A.M. Wirth, R., Fedorova, N., and Sobolev N.V. Nanometre-Sized Mineral and Fluid Inclusions in Cloudy Siberian Diamonds: New Insights on Diamond Formation, Eur. J. Mineral, 2008, vol. 20, pp. 317–331.

    Article  Google Scholar 

  • Marx, P.C., Pyrrhotite and the Origin of Terrestrial Diamonds, Mineral. Mag., 1972, vol. 38, pp. 636–638.

    Article  Google Scholar 

  • Meyer, H.O.A., Inclusions in Diamond, in Mantle Xenoliths, New York: Wiley, 1987.

    Google Scholar 

  • Navon, O., High Internal Pressures in Diamond Fluid Inclusions Determined by Infrared-Absorption, Nature, 1991, vol. 353, pp. 746–748.

    Article  Google Scholar 

  • Navon, O., Diamond Formation in the Earth’s Mantle, Proceedings of the 7th Intern. Kimberlite Conf., Red Roof Design, Cape Town, 1999, vol. 2, pp. 584–604.

    Google Scholar 

  • Navon, O., Hutcheon, I.D., Rossman, G.R., and Wasserburg, G.I., Mantle-Derived Fluids in Diamond Micro-Inclusions, Nature, 1988, vol. 335, pp. 784–789.

    Article  Google Scholar 

  • Pal’yanov, Yu.N., Sokol, A.G., and Sobolev, N.V., Experimental Simulation of Mantle Diamond-Forming Processes, Geol. Geofiz., 2005, vol. 46, no. 12, pp. 1290–1303.

    Google Scholar 

  • Palatnik, L.S and Landau, A.I., Fazovye ravnovesiya v mnogokomponentnykh sistemakh (Phase Equilibria in Multicomponent Systems), Khar’kov: Khar’kov State Univ., 1961.

    Google Scholar 

  • Rhines, F.N., Phase Diagrams in Metallurgy, New York: McGraw-Hill, 1956; Moscow: Metallurgizdat, 1960.

    Google Scholar 

  • Schrauder, M. and Navon, O., Hydrous and Carbonatitic Mantle Fluids in Fibrous Diamonds from Jwaneng, Botswana, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 761–751.

    Article  Google Scholar 

  • Shushkanova, A.V. and Litvin, Yu.A., Phase Relations by Melting of Diamond-Bearing Carbonate-Silicate-Sulfide Systems, Geol. Geofiz., 2005, vol. 46, no. 12, pp. 1331–1340.

    Google Scholar 

  • Shushkanova, A.V. and Litvin, Yu.A., Experimental Evidence for Liquid Immiscibility in the Model CaCO3-Pyrope-Pyrrhotite System at 7.0 GPa: The Role of Carbonatite and Sulfide Melts in Diamond Genesis, Can. Mineral., 2008, vol. 46, pp. 991–1005.

    Article  Google Scholar 

  • Sobolev, N.V., Glubinnye vklyucheniya v kimberlitakh i problema sostava verkhnei mantii (Deep Inclusions in Kimberlites and Composition of the Upper Mantle), Novosibirsk: Nauka, 1974.

    Google Scholar 

  • Sobolev, N.V., Fursenko, B.A., Goryainov, S.V., et al., Fossilized High Pressure from the Earth’s Deep Interior: The Coesite-in-Diamond Barometer, Proc. Nat. Acad. Sci. USA, 2000, vol. 97, no. 22, pp. 11875–11879.

    Article  Google Scholar 

  • Sokol, A.G. and Pal’yanov, Yu.N., Diamond Crystallization in Fluid and Carbonate-Fluid Systems under Mantle P-T Conditions: 2. An Analytical Review of Experimental Data, Geokhem. Int., 2004, vol. 42, no. 11, pp. 1018–1032.

    Google Scholar 

  • Spivak, A.V. and Litvin, Yu.A., Diamond Synthesis in Multicomponent Carbonate-Carbon Melts of Natural Chemistry: Elementary Processes and Properties, Diam. Relat. Mater., 2004, vol. 13, pp. 482–487.

    Article  Google Scholar 

  • Spivak, A.V., Litvin, Yu.A., Shushkanova, A.V., et al., Diamond Formation in Carbonate-Silicate-Sulfide-Carbon Melts: Raman and IR-Microspectroscopy, Eur. J. Mineral., 2008, vol. 20, no. 3 P, pp. 341–347.

    Article  Google Scholar 

  • Sunagawa, I., Growth and Morphology of Diamond Crystals under Stable and Metastable Conditions, J. Cryst. Growth, 1990, vol. 99, pp. 1156–1161.

    Article  Google Scholar 

  • Taylor, L.A. and Anand, M., Diamonds: Time Capsules from the Siberian Mantle, Chemie der Erde/Geochemistry, 2004, vol. 64, pp. 1–74.

    Article  Google Scholar 

  • Titkov, S.V., Gorshkov, A.I., Zudin, N.G., et al., Microin-clusions in Dark Gray Diamond Crystals of Octahedral Habit from Yakutian Kimberlites, Geokhem. Int., 2006, vol. 44, no. 11, pp. 1121–1128.

    Article  Google Scholar 

  • Wentorf, R.H. and Bovenkerk, H.P., On the Origin of Natural Diamonds, Astrophys. J., 1961, vol. 134, pp. 995–1005.

    Article  Google Scholar 

  • Williams, A.F., The Genesis of Diamond, London: E. Benn Ltd, 1932.

    Google Scholar 

  • Klein-BenDavid O., Wirth, R. and Navon, O., TEM Imaging and Analysis of Microinclusions in Diamond: a Close Look at Diamond-Bearing Fluids, Am. Mineral., 2006, vol. 91, pp. 353–356.

    Article  Google Scholar 

  • Wyllie, P.J., Mantle Fluid Compositions Buffered by Carbonates in Peridotite-CO2-H2O, J. Geol., 1977, vol. 85, pp. 187–207.

    Article  Google Scholar 

  • Zakharov, A.M., Diagrammy sostoyaniya chetvernykh sistem (State Diagrams of Tetradic Systems), Moscow: Metallurgiya, 1964.

    Google Scholar 

  • Zedgenizov, D.A., Kagi, H., Shatsky, V.S., and Sobolev, N.V., Carbonatitic Melts in Cuboid Diamonds from Udachnaya Kimberlite Pipe (Yakutia): Evidence from Vibrational Spectroscopy, Mineral. Mag., 2004, vol. 68, no. 1, pp. 61–73.

    Article  Google Scholar 

  • Zedgenizov, D.A., Rege, S., Griffin, W.L., et al., Compositional Variations of Micro-Inclusions in Fluid-Bearing Diamonds from Udachnaya Kimberlite Pipe As Revealed by LA-ICP-MS, Chem. Geol., 2007, vol. 240, pp. 151–162.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Litvin.

Additional information

Original Russian Text © Yu.A. Litvin, 2012, published in Geologiya Rudnykh Mestorozhdenii, 2012, Vol. 54, No. 6, pp. 523–539.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litvin, Y.A. Physicochemical formation conditions of natural diamond deduced from experimental study of the eclogite-carbonatite-sulfide-diamond system. Geol. Ore Deposits 54, 443–457 (2012). https://doi.org/10.1134/S1075701512060062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701512060062

Keywords

Navigation