Skip to main content
Log in

Investigation of the structuring in the Sol-Gel systems based on tetraethoxysilane

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of change in the dynamic and structural viscosity of a number of silica sols based on tetraethoxysilane, including sols doped with aluminum and cobalt nitrates, is investigated. The results obtained are analyzed in the framework of the Derjaguin-Landau-Verwey-Overbeek theory. It is revealed that structural forces make a considerable contribution to the stability and structuring processes in these systems. The structuring in a rapidly gelating homogeneous heterophase dispersion formed by finely dispersed α-Al2O3 particles in the silica sol doped with aluminum and cobalt nitrates is examined, and the assumptions regarding the mechanism of the structuring processes occurring in this system are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brinker, C.J. and Scherer, G.W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, San Diego: Academic, 1990.

    Google Scholar 

  2. Mackenzie, J., Sol-Gel Researches-Achievements since 1981 and Prospects for the Future, J. Sol-Gel Sci. Technol., 2003, vol. 26, nos. 1–3, pp. 23–27.

    Article  CAS  Google Scholar 

  3. Wenzel, J., Trends in Sol-Gel Processing: Toward 2004, J. Non-Cryst. Solids, 1985, vol. 73, no. 1, pp. 693–699.

    Article  CAS  Google Scholar 

  4. Dislich, H., Sol-Gel: Science, Processes and Products, J. Non-Cryst. Solids, 1986, vol. 80, nos. 1–3, pp. 115–121.

    Article  CAS  Google Scholar 

  5. Ulrich, D., Prospects of Sol-Gel Processes, J. Non-Cryst. Solids, 1988, vol. 100, nos. 1–3, pp. 174–193.

    Article  CAS  Google Scholar 

  6. Macknezie, J., Applications of the Sol-Gel Process, J. Non-Cryst. Solids, 1988, vol. 100, nos. 1–3, pp. 162–168.

    Article  Google Scholar 

  7. Sakka, S., The Current State of Sol-Gel Technology, J. Sol-Gel Sci. Technol., 1994, vol. 3, nos. 1–3, pp. 69–81.

    Article  CAS  Google Scholar 

  8. Brinker, C.J., Keefer, K.D., Schaefer, D.W., and Ashley, C.S., Sol-Gel Transition in Simple Silicates, J. Non-Cryst. Solids, 1982, vol. 48, no. 1, pp. 47–64.

    Article  CAS  Google Scholar 

  9. Sakka, S. and Kamiya, K., The Sol-Gel Transition in the Hydrolysis of Metal Alkoxides in Relation to the Formation of Glass Fibers and Films, J. Non-Cryst. Solids, 1982, vol. 48, no. 1, pp. 31–46.

    Article  CAS  Google Scholar 

  10. Strawbridge, I., Craievich, A.F., and James, P.F., The Effect of the H2O/TEOS Ratio on the Structure of Gels Derives by the Acid Catalyzed Hydrolysis of Tetraethoxysilane, J. Non-Cryst. Solids, 1985, vol. 72, no. 1, pp. 139–157.

    Article  CAS  Google Scholar 

  11. Pope, E.J.A. and Mackenzie, J.D., Sol-Gel Processing of Silica: II. The Role of the Catalyst, J. Non-Cryst. Solids, 1986, vol. 87, no. 1, pp. 185–198.

    Article  CAS  Google Scholar 

  12. Yoldas, B.E., Hydrolytic Polycondensation of Si(OC2H5)4 and Effect of Reaction Parameters, J. Non-Cryst. Solids, 1986, vol. 83, no. 3, pp. 375–390.

    Article  CAS  Google Scholar 

  13. Brinker, C.J., Hydrolysis and Condensation of Silicates: Effects on Structure, J. Non-Cryst. Solids, 1988, vol. 100, nos. 1–3, pp. 31–50.

    Article  CAS  Google Scholar 

  14. Sacks, M.D. and Sheu, R.-S., Rheological Properties of Silica Sol-Gel Materials, J. Non-Cryst. Solids, 1987, vol. 92, nos. 1–3, pp. 383–396.

    Article  CAS  Google Scholar 

  15. Kozuka, H., Kuroki, H., and Sakka, S., Flow Characteristics and Spinnability of Sols Prepared from Silicon Alkoxide Solution, J. Non-Cryst. Solids, 1988, vol. 100, nos. 1–3, pp. 226–230.

    Article  CAS  Google Scholar 

  16. Sakka, S. and Kozuka, H., Rheology of Sols and Fiber Drawing, J. Non-Cryst. Solids, 1988, vol. 100, nos. 1–3, pp. 142–153.

    Article  CAS  Google Scholar 

  17. Kinouchi Filho, O. and Aegerter, M.A., Rheology of the Gelation Process of Silica Gel, J. Non-Cryst. Solids, 1988, vol. 105, no. 3, pp. 191–197.

    Article  CAS  Google Scholar 

  18. Sakka, S., Kozuka, H., and Adachi, T., Stability of Solutions, Gels and Glasses in the Sol-Gel Glass Synthesis, J. Non-Cryst. Solids, 1988, vol. 102, no. 1, pp. 253–268.

    Article  Google Scholar 

  19. Xu, R., Pope, E.J.A., and Mackenzie, J.D., Structural Evolution of Sol-Gel Systems through Viscosity Measurement, J. Non-Cryst. Solids, 1988, vol. 106, nos. 1–3, pp. 242–245.

    Article  CAS  Google Scholar 

  20. Bailey, J.K., Nagase, T., Broberg, S.M., and Mecartney, M.L., Microstructural Evolution and Rheological Behavior during the Gelation of Ceramic Sols, J. Non-Cryst. Solids, 1989, vol. 109, nos. 1–3, pp. 198–210.

    Article  CAS  Google Scholar 

  21. Shin, D.-Y. and Han, S.-M., Spinnability and Rheological Properties of Sols Derived from Si(OC2H5)4 and Zr(O-nC3H7)4 Solutions, J. Sol-Gel Sci. Technol., 1994, vol. 1, nos. 1–3, pp. 267–273.

    Article  CAS  Google Scholar 

  22. Bagnall, C.M., Howarth, L.G., and James, P.F., Modelling of Aggregation Kinetics of Colloidal Silica Particles, J. Non-Cryst. Solids, 1990, vol. 121, nos. 1–3, pp. 56–60.

    Article  CAS  Google Scholar 

  23. Shabanova, N.A. and Sarkisov, P.D., Osnovy zol’-gel’ tekhnologii nanodispersnogo kremnezema (Principles of Sol-Gel Technology of Nanodispersed Silica), Moscow: Akademkniga, 2004.

    Google Scholar 

  24. Borisenko, A.I. and Nikolaeva, L.V., Tonkie stekloemalevye i steklokeramicheskie pokrytiya (Thin Glass-Enamel and Glass-Ceramic Coatings), Leningrad: Nauka, 1980.

    Google Scholar 

  25. Golikova, E.V., Ioganson, O.M., Fedorova, T.G., and Chernoberezhskii, Yu.M., Electrosurface Properties and Aggregation Stability of Aqueous Dispersions of α-Al2O3, γ-Al2O3, and γ-AlOOH, Poverkhnost, 1995, no. 9, pp. 78–89.

  26. Grigorov, O.N., Karpova, I.F., Koz’mina, Z.P., Tikhomolova, K.P., Fridrikhsberg, D.A., and Chernoberezhskii, Yu.M., Rukovodstvo k prakticheskim rabotam po kolloidnoi khimii (Practical Works in Colloid Chemistry: A Manual), Leningrad: Leningr. Gos. Univ., 1964.

    Google Scholar 

  27. Derjaguin, B.V. and Landau, L.D., Theory of Stability of Highly Charged Lyophobic Sols and Aggregation of Highly Charged Particles in Electrolyte Solutions, Zh. Eksp. Teor. Fiz., 1941, vol. 11, no. 2, pp. 802–821; 1945, vol. 15, no. 11, pp. 663–682.

    Google Scholar 

  28. Derjaguin, B.V., Teoriya ustoichivosti kolloidov i tonkikh plenok (The Theory of Stability of Colloids and Thin Films), Moscow: Nauka, 1986.

    Google Scholar 

  29. Derjaguin, B.V. and Churaev, N.V., Inclusion of Structural Forces in the Theory of Stability of Colloids and Films, J. Colloid Interface Sci., 1985, vol. 103, no. 2, pp. 542–553.

    Article  Google Scholar 

  30. Oshima, H.J., Healy, T.W., and White, L.R., Improvement on Hogg-Healy-Fuerstenau Formulas for the Interaction on Dissimilar Double Layers, Thin Solid Films, 1982, vol. 89, no. 2, pp. 484–493.

    Google Scholar 

  31. Dukhin, S.S., Elektroforez (Electrophoresis), Moscow: Nauka, 1976.

    Google Scholar 

  32. Akhadov, Ya.Yu., Dielektricheskie svoistva binarnykh rastvorov (Dielectric Properties of Binary Solutions), Moscow: Nauka, 1977.

    Google Scholar 

  33. Baes, C.F. and Mesmer, R.E., Hydrolysis of Cations, New York: Wiley, 1976, p. 489.

    Google Scholar 

  34. Pilipenko, A.T., Falendysh, N.F., and Parkhomenko, E.P., State of Aluminum(III) in Aqueous Solutions, Khim. Tekhnol. Vody, 1982, vol. 4, no. 2, pp. 136–150.

    CAS  Google Scholar 

  35. Nazarenko, V.A., Antonovich, V.N., and Nevskaya, E.M., Gidroliz ionov metallov v razbavlennykh rastvorakh (Hydrolysis of Metal Ions in Dilute Solutions), Moscow: Atomizdat, 1976.

    Google Scholar 

  36. Bergstrom, L., Hamaker Constants of Inorganic Materials, Adv. Colloid Interface Sci., 1997, vol. 70, no. 1, pp. 125–160.

    Article  CAS  Google Scholar 

  37. Visser, J., On Hamaker Constants, Adv. Colloid Interface Sci., 1972, vol. 3, no. 4, pp. 331–363.

    Article  CAS  Google Scholar 

  38. Derjaguin, B.V., Churaev, N.V., and Muller, V.M., Poverkhnostnye sily (Surface Forces), Moscow: Nauka, 1985.

    Google Scholar 

  39. Peshel’, G., Kal’denits, Dzh., Berg, D., and Lyudvig, P., Investigation of the Structural Component of the Disjoining Pressure in Liquids, Kolloidn. Zh., 1986, vol. 48, no. 6, pp. 1090–1095.

    Google Scholar 

  40. Golikova, E.V., Chernoberezhskii, Yu.M., Ioganson, O.M., Petrovsky, G.T., Vysokovskaja, N.A., and Grigoriev, V.S., On the Parameters of the Structural Component of SiO2 Particles Interaction Energy in KCl Solutions, Abstracts of Papers, XII International Conference “Surface Forces”, Zvenigorod, Russia, 2003.

    Google Scholar 

  41. Golikova, E.V., Chernoberezhskii, Yu.M., Ioganson, O.M., Vysokovskaya, N.A., and Grigor’ev, V.S., Stability of Aqueous Crystalline Quartz Dispersions in the Acidic pH Region: The Role of the Structural Component of the Particle Interaction Energy, Kolloidn. Zh., 2003, vol. 65, no. 4, pp. 460–467 [Colloid J. (Engl. transl.), 2003, vol. 65, no. 4, pp. 420–427].

    Google Scholar 

  42. Aguf, I.A. and Orkina, T.N., Gelation Kinetics in Aerosil-Sulfate Solution System, Kolloidn. Zh., 1979, vol. 31, no. 3, pp. 403–408.

    Google Scholar 

  43. Iler, R.K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry of Silica, New York: Wiley, 1979. Translated under the title Khimiya kremnezema, Moscow: Mir, 1982.

    Google Scholar 

  44. Parks, G.A., The Isoelectric Points of Solids Oxides: Solid Hydroxides and Aqueous Hydrocomplex Systems, Chem. Rev., 1965, vol. 65, no. 2, pp. 177–198.

    Article  CAS  Google Scholar 

  45. Efremov, I.F. and Us’yarov, O.G., The Long-range Interaction between Colloid and Other Particles and the Formation of Periodic Colloid Structures, Usp. Khim., 1976, vol. 45, no. 5, pp. 576–907.

    Google Scholar 

  46. Efremov, I.F., Periodicheskie kolloidnye struktury (Periodic Colloidal Structures), Leningrad: Khimiya, 1973.

    Google Scholar 

  47. Churaev, N.V., Surface Forces and Physicochemistry of Surface Phenomena, Usp. Khim., 2004, vol. 73, no. 1, pp. 26–38.

    Google Scholar 

  48. Malkiman, V.I., Struzhko, V.A., Shamrikov, V.M., Chertov, V.M., and Kosenko, E.I., Ageing Kinetics of Aluminosilica Hydrogel, Kolloidn. Zh., 1989, vol. 51, no. 4, pp. 691–695.

    CAS  Google Scholar 

  49. Golikova, E.V., Klochkova, O.V., Kuchuk, V.I., and Chernoberezhskii, Yu.M., Investigation into the Aggregation Stability of Aqueous Dispersions of Natural Diamond in AlCl3 Solutions, Kolloidn. Zh., 1986, vol. 48, no. 5, pp. 1005–1010.

    CAS  Google Scholar 

  50. Voronkov, M.G., Mileshkevich, V.P., and Yuzhelevskii, Yu.A., Siloksanovaya svyaz (Siloxane Bond), Moscow: Nauka, 1976.

    Google Scholar 

  51. Franks, G., Zeta Potentials and Yield Stresses of Silica Suspensions in Concentrated Monovalent Electrolytes: Isoelectric Point Shift and Additional Attraction, J. Colloid Interface Sci., 2002, vol. 249, no. 1, pp. 44–51.

    Article  CAS  Google Scholar 

  52. Colloid Science, Kruyt, H., Ed., Amsterdam: Elsevier, 1952, vol. 1. Translated under the title Nauka o kolloidakh, Moscow: Inostrannaya Literatura, 1995, vol. 1.

    Google Scholar 

  53. Hogg, R. and Yang, K.C., Secondary Coagulation, J. Colloid Interface Sci., 1976, vol. 56, no. 3, pp. 573–576.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.V. Khamova, O.A. Shilova, E.V. Golikova, 2006, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khamova, T.V., Shilova, O.A. & Golikova, E.V. Investigation of the structuring in the Sol-Gel systems based on tetraethoxysilane. Glass Phys Chem 32, 448–459 (2006). https://doi.org/10.1134/S1087659606040092

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659606040092

Keywords

Navigation