Skip to main content
Log in

Nanopowders and films of titanium oxide for photocatalysis: A review

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A review is presented of investigations devoted to the synthesis of nanopowders and films of titanium oxide for photocatalysis. The most frequently used methods for studying the composition and crystal structure of materials have been analyzed. The main results obtained in the field of the synthesis of TiO2 nanopowders have been summarized. Most attention has been focused on the reactive sputtering methods and the influence of the composition and crystal structure of films on their photocatalytic properties. Additional heat treatment and doping of titanium oxide films serve as the main techniques for controlling their properties. It has been demonstrated that the formation of oxide film heterostructures makes it possible to significantly increase the catalytic activity of titanium oxide films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vorontsov, A.V., Kozlov, D.V., Smirniotis, P.G., and Parmon, V.N., TiO2 Photocatalytic Oxidation: I. Photocatalysts for Liquid-Phase and Gas-Phase Processes and the Photocatalytic Degradation of Chemical Warfare Agent Stimulants in a Liquid Phase, Kinet. Katal., 2005, vol. 46, no. 2, pp. 203–218 [Kinet. Catal. (Engl. transl.), 2005, vol. 46, no. 2, pp. 189–203].

    Article  CAS  Google Scholar 

  2. Mart’yanov, I.N., Savinov, E.N., and Parmon, V.N., Photocatalytic Oxidation of Methyl Viologen in an Aqueous Suspension of TiO2 in the Presence of Oxygen and Hydrogen Peroxide: The Effect of the Solution pH and H2O2 Concentration on the Reaction Rate, Kinet. Katal., 1997, vol. 38, no. 1, pp. 83–89 [Kinet. Catal. (Engl. transl.), 1997, vol. 38, no. 1, pp. 70–76].

    Google Scholar 

  3. Fenelonov, V.B. and Parmon, V.N., Promyshlennyi kataliz v lektsiyakh, no. 1: Vvedenie v fizicheskuyu khimiyu formirovaniya tekstury geterogennykh katalizatorov (Lectures on Industrial Catalysis, no. 1: Introduction to Physical Chemistry of Texture Formation of Heterogeneous Catalysts), Moscow: Kalvis, 2005.

    Google Scholar 

  4. Parmon, V.N., Photocatalysis as a Phenomenon—Aspects of Terminology, Catal. Today. A, 1997, vol. 39, no. 3, pp. 137–144.

    Article  CAS  Google Scholar 

  5. Parmon, V.N., Rate-Limiting Steps, Rate-Determining Parameters, and Apparent Activation Energy of Stepwise Reactions: 2. Simple Stepwise Consecutive Catalytic Reactions Linear in Respect to Intermediates, React. Kinet. Catal. Lett., 2003, vol. 79, no. 2, pp. 303–317.

    Article  CAS  Google Scholar 

  6. Vorontsov, A.V., Savinov, E.N., Barannik, G.B., Troitsky, V.N., and Parmon, V.N., Quantitative Studies on the Heterogeneous Gas-Phase Photooxidation of CO and Simple VOCs by Air over TiO2, Catal. Today, 1997, vol. 39, pp. 207–218.

    Article  CAS  Google Scholar 

  7. Zakharenko, V.S., Parmon, V.N., and Zamaraev, K.I., Photoadsorption and Photocatalytic Processes Influencing the Composition of the Earth’s Atmosphere: I. Irreversible Photoadsorption of Freon-134a on Magnesia under Conditions Simulating Atmosphere, Kinet. Katal., 1997, vol. 38, no. 1, pp. 140–144 [Kinet. Catal. (Engl. transl.), 1997, vol. 38, no. 1, pp. 124–128].

    Google Scholar 

  8. Vorontsov, A.V., Kozlov, D.V., Smirniotis, P.G., and Parmon, V.N., TiO2 Photocatalytic Oxidation: II. Gas-Phase Processes, Kinet. Katal., 2005, vol. 46, no. 3, pp. 422–436 [Kinet. Catal., (Engl. transl.), 2005, vol. 46, no. 3, pp. 450–465].

    Article  CAS  Google Scholar 

  9. Vorontsov, A.V., Barannik, G.B., Snegurenko, O.I., Savinov, E.N., and Parmon, V.N., Complete Heterogeneous Photocatalytic Oxidation of Acetone, Ethanol, and Diethyl Ether Vapors with Air over Honeycomb-Supported TiO2, Kinet. Katal., 1997, vol. 38, no. 1, pp. 97–101 [Kinet. Catal. (Engl. transl.), 1997, vol. 38, no. 1, pp. 84–87].

    Google Scholar 

  10. Savinov, E.N., Photocatalytic Methods of Purification of Water and Air, Soros. Obraz. Zh., 2000, vol. 6, no. 11, pp. 52–56.

    Google Scholar 

  11. Tsodikov, M.V., Tephyakov, V.V., Magsumov, M.I., Shkol’nikov, E.I., Sidorova, E.V., Volkov, V.V., Kapteijn, F., Gora, L., Trusov, L.I., and Uvarov, V.I., Ceramic Membranes Modified with Catalytic Oxide Films as Ensembles of Catalytic Nanoreactors, Kinet. Katal., 2006, vol. 47, no. 1, pp. 29–39 [Kinet. Catal. (Engl. transl.), 2006, vol. 47, no. 1, pp. 25–34].

    Article  CAS  Google Scholar 

  12. Lisachenko, A.A., Kuznetsov, V.N., Zakharov, M.N., and Mikhailov, R.V., The Interaction of O2, NO, and N2O with Surface Defects of Dispersed Titanium Dioxide, Kinet. Katal., 2004, vol. 45, no. 2, pp. 205–213 [Kinet. Catal. (Engl. transl.), 2004, vol. 45, no. 2, pp. 189–197].

    Article  Google Scholar 

  13. Linsebigler, A.L., Lu, G., and Yates, J.T., Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev., 1995, vol. 95, pp. 735–758.

    Article  CAS  Google Scholar 

  14. Hoffmann, M.R., Martin, S.T., Choi, W.Y., and Bahnemannt, D.W., Environmental Applications of Semiconductor Photocatalysis, Chem. Rev., 1995, vol. 95, pp. 69–96.

    Article  CAS  Google Scholar 

  15. Mills, A. and Le Hunte, S.J., An Overview of Semiconductor Photocatalysis, J. Photochem. Photobiol., A, 1997, vol. 108, no. 1, pp. 1–35.

    Article  CAS  Google Scholar 

  16. Vorontsov, A.V., Kozlov, D.V., Smirniotis, P.G., and Parmon, V.N., TiO2 Photocatalytic Oxidation: III. Gas-Phase Reactors, Kinet. Katal., 2005, vol. 46, no. 3, pp. 466–473 [Kinet. Catal. (Engl. transl.), 2005, vol. 46, no. 3, pp. 437–444].

    Google Scholar 

  17. http://www.aerolife.nm.ru

  18. http://www.aerolife.ru

  19. Kozlov D.V. and Vorontsov A.V., Development of Technologies of Fabrication and Widespread Application of Photocatalytic Devices for Air Purification, Including the Construction and Mastering of Pilot Production, http://mdest.nsu.ru/resources/technology/photocatalist/photocatalist.pdf

  20. Mills, A. and Lee, S.-K.J., A Web-Based Overview of Semiconductor Photochemistry-Based Current Commercial Applications, J. Photochem. Photobiol., A, 2002, vol. 152, nos. 1–3, pp. 233–247.

    Article  CAS  Google Scholar 

  21. Huang, Z., Maness, P.-C., Blake, D.M., Wolfrum, E.J., and Smolinski, S.L., Bactericidal Mode of Titanium Dioxide Photocatalysis, J. Photochem. Photobiol., A, 2000, vol. 130, pp. 163–170.

    Article  CAS  Google Scholar 

  22. Huang, Z., Maness, P.-C., Blake, D.M., Wolfrum, E.J., Smolinski, S.L., and Jacoby, W.A., Bactericidal Mode of Titanium Dioxide Photocatalysis, J. Photochem. Photobiol., A, 2000, vol. 130, pp. 163–170.

    Article  CAS  Google Scholar 

  23. Sunada, K., Watanabe, T., and Hashimoto, K.J., Studies on Photokilling of Bacteria on TiO2 Thin Film, J. Photochem. Photobiol., A, 2003, vol. 156, pp. 227–233.

    Article  CAS  Google Scholar 

  24. Lawton, L.A., Robertson, P.K.J., Cornish, B.J.P.A., Marr, I.L., and Jaspars, M., Processes Influencing Surface Interaction and Photocatalytic Destruction of Microcystins on Titanium Dioxide Photocatalysts, J. Catal., 2003, vol. 213, no. 1, pp. 109–113.

    Article  CAS  Google Scholar 

  25. Cai, R., Hashimoto, K., Kubota, Y., and Fujshima, A., Increment of Photocatalytic Killing of Cancer-Cells Using TiO2 with the Aid of Superoxide-Dismutase, Chem. Lett., 1992, no. 3, pp. 427–430.

  26. Karakitsou, K.E. and Verykios, X.E., Effects of Altervalent Cation Doping of TiO2 on Its Performance as a Photocatalyst for Water Cleavage, J. Phys. Chem., 1993, vol. 97, no. 6, pp. 1184–1189.

    Article  CAS  Google Scholar 

  27. Wold, A., Photocatalytic Properties of TiO2, Chem. Mater., 1993, vol. 5, no. 3, pp. 280–283.

    Article  CAS  Google Scholar 

  28. Khan, M.M.T., Chatterjee, D., and Bala, M., Photocatalytic Reduction of N2 to NH3 Sensitized by the [Ru(III)-Ethylenediaminetetraacetate-2,2′-Bipyridyl]-Complex in Pt-TiO2 Semiconductor Particulate System, J. Photochem. Photobiol., A, 1992, vol. 67, no. 3, pp. 349–352.

    Article  CAS  Google Scholar 

  29. Gerischer, H. and Heller, A.J., Photocatalytic Oxidation of Organic Molecules at TiO2 Particles by Sunlight in Aerated Water, J. Electrochem. Soc., 1992, vol. 139, no. 1, pp. 113–118.

    Article  CAS  Google Scholar 

  30. Mills, G. and Hoffmann, M.R., Photocatalytic Degradation of Pentachlorophenol on TiO2 Particles: Identification of Intermediates and Mechanism of Reaction, Environ. Sci. Technol., 1993, vol. 27, no. 8, pp. 1681–1689.

    Article  CAS  Google Scholar 

  31. Kormann, C., Bahnemann, D.W., and Hoffmann, M.R., Photolysis of Chloroform and Other Organic Molecules in Aqueous TiO2 Suspensions, Environ. Sci. Technol., 1991, vol. 25, no. 3, pp. 494–500.

    Article  CAS  Google Scholar 

  32. Carraway, E.R., Hoffman, A.J., and Hoffmann, M.R., Photocatalytic Oxidation of Organic Acids on Quantum-Sized Semiconductor Colloids, Environ. Sci. Technol., 1994, vol. 28, no. 5, pp. 786–793.

    Article  CAS  Google Scholar 

  33. Chemseddine, A. and Boehm, H.P., A Study of the Primary Step in the Photochemical Degradation of Acetic Acid and Chloroacetic Acids on a TiO2 Photocatalyst, J. Mol. Catal., 1990, vol. 60, no. 3, pp. 295–311.

    Article  CAS  Google Scholar 

  34. D’Oliveira, J.C., Minero, C., Pelizzetti, E., and Pichat, P., Photodegradation of Dichlorophenols and Trichlorophenols in TiO2 Aqueous Suspensions: Kinetic Effects of the Positions of the Cl Atoms and Identification of the Intermediates, J. Photochem. Photobiol., A, 1993, vol. 72, no. 3, pp. 261–267.

    Article  Google Scholar 

  35. D’Oliveira, J.C., Al-Sayyed, G., and Pichat, P., Photodegradation of 2-Chlorophenol and 3-Chlorophenol in TiO2 Aqueous Suspensions, Environ. Sci. Technol., 1990, vol. 24, no. 7, pp. 990–996.

    Article  Google Scholar 

  36. Hidaka, H., Zhao, J., Pelizzetti, E., and Serpone, N., Photodegradation of Surfactants: 8. Comparison of Photocatalytic Processes between Anionic Sodium Dodecylbenzenesulfonate and Cationic Benzyldodecyldimenthylammonium Chloride on the TiO2 Surface, J. Phys. Chem., 1992, vol. 96, no. 5, pp. 2226–2230.

    Article  CAS  Google Scholar 

  37. Pelizzetti, E., Minero, C., Piccinini, P., and Vincenti, M., Phototransformations of Nitrogen-Containing Organic Compounds over Irradiated Semiconductor Metal Oxides: Nitrobenzene and Atrazine over TiO2 and ZnO, Coord. Chem. Rev., 1993, vol. 125, nos. 1–2, pp. 183–193.

    Article  CAS  Google Scholar 

  38. Hoffmann, M.R., Martin, S.T., and Choi, W.Y., Environmental Applications of Semiconductor Photocatalysis, Chem. Rev., 1995, vol. 95, pp. 69–96.

    Article  CAS  Google Scholar 

  39. Yamashita, H., Harada, M., Misaka, J., Takeuchi, M., Ikeue, K., and Anpo, M., Degradation of Propanol Diluted in Water under Visible Light Irradiation Using Metal Ion-Implanted Titanium Dioxide Photocatalysts, J. Photochem. Photobiol., A, 2002, vol. 148, nos. 1–3, pp. 257–261.

    Article  CAS  Google Scholar 

  40. Kobasa, I.M., Mazurkevich, Y.S., and Zozulya, N.I., Effect of Photochemical and Reductive Activation of Titanium Dioxide on Its Catalytic Properties in Deposition of Metallic Copper, Teor. Eksp. Khim., 2004, vol. 40, no. 2, pp. 110–115 [Theor. Exp. Chem. (Engl. transl.), 2004, vol. 40, no. 2, pp. 115–119].

    Google Scholar 

  41. Khalyavka, T.A., Shimanovskaya, V.V., Strelko, V.V., and Kapinus, E.I., Photocatalytic Activity of Titanium Dioxide in the Degradation of Methylene Blue and Tetrachlorofluorescein in Aqueous Solutions, Teor. Eksp. Khim., 2001, vol. 37, no. 1, pp. 53–57 [Theor. Exp. Chem. (Engl. transl.), 2001, vol. 37, no. 1, pp. 58–62].

    Google Scholar 

  42. Minghua, Z., Juaguo, Y., Bei, C., and Huagen, Y., Preparation and Photocatalytic Activity of Fe-Doped Mesoporous Titanium Dioxide Nanocrystalline Photocatalysts, Mater. Chem. Phys., 2005, vol. 93, pp. 159–163.

    Article  CAS  Google Scholar 

  43. Xingwang, Z., Minghua, Z., and Lecheng, L., Preparation of Anatase TiO2 Supported on Alumina by Different Metal Organic Chemical Vapor Deposition Methods, Appl. Catal., A, 2005, vol. 282, pp. 285–293.

    Article  CAS  Google Scholar 

  44. Albert, M., Gao, Y.M., Toft, D., Dwight, K., and Wold, A., Photoassisted Gold Deposition of Titanium Dioxide, Mater. Res. Bull., 1992, vol. 27, no. 8, pp. 961–966.

    Article  CAS  Google Scholar 

  45. Inel, Y. and Ertek, D.J., Photocatalytic Deposition of Bismuth(III) Ions onto TiO2 Powder, J. Chem. Soc., Faraday Trans., 1993, vol. 89, no. 1, pp. 129–133.

    Article  CAS  Google Scholar 

  46. Borgarello, E., Serpone, N., Emo, G., Harris, R., Pelizzettie, E., and Minero, C., Light-Induced Reduction of Rhodium(III) and Palladium(II) on Titanium Dioxide Dispersions and the Selective Photochemical Separation and Recovery of Gold(III), Platinum(IV), and Rhodium(III) in Chloride Media, Inorg. Chem., 1986, vol. 25, no. 25, pp. 4499–4503.

    Article  CAS  Google Scholar 

  47. Mills, A., Hill, G., Bhopal, S., Parkin, I.P., and O’Neill, S.A., Thick Titanium Dioxide Films for Semiconductor Photocatalysis, J. Photochem. Photobiol., A, 2003, vol. 160, pp. 185–194.

    Article  CAS  Google Scholar 

  48. Fujishima, A., Rao, T.N., and Tryk, D.A., Titanium Dioxide Photocatalysis, J. Photochem. Photobiol., C, 2000, vol. 1, no. 1, pp. 1–21.

    Article  CAS  Google Scholar 

  49. Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., and Watanabe, T., Light-Induced Amphiphilic Surfaces, Nature, 1997, vol. 388, no. 6641, pp. 431–432.

    Article  CAS  ADS  Google Scholar 

  50. Sakai, N., Fujishima, A., Watanabe, T., and Hashimoto, K., Quantitative Evaluation of the Photo-induced Hydrophilic Conversion Properties of TiO2 Thin Film Surfaces by the Reciprocal of Contact Angle, J. Phys. Chem. B, 2003, vol. 107, no. 4, pp. 1028–1035.

    Article  CAS  Google Scholar 

  51. Yoshioka, K., Petrykin, V., Kakihana, M., Kato, H., and Kido, A., The Relationship between Photocatalytic Activity and Crystal Structure in Strontium Tantalates, J. Catal., 2005, vol. 232, pp. 102–107.

    Article  CAS  Google Scholar 

  52. Yang, T.-S., Shiu, C.-B., and Wong, M.-S., Structure and Hydrophilicity of Titanium Oxide Films Prepared by Electron Beam Evaporation, Surf. Sci., 2004, vol. 548, pp. 75–82.

    Article  CAS  ADS  Google Scholar 

  53. Li, F.B. and Li, X.Z., Photocatalytic Properties of Gold/Gold Ion-Modified Titanium Dioxide for Wastewater Treatment, Appl. Catal., A, 2002, vol. 228, pp. 15–27.

    Article  CAS  Google Scholar 

  54. Schierbaum, K.D., Fischer, S., Torquemada, M.C., De Segovia, J.L., Romam, E., and Martin-Gago, J.A., The Interaction of Pt with TiO2(110) Surfaces: A Comparative XPS, UPS, ISS, and ESD Study, Surf. Sci., 1996, vol. 345, pp. 261–273.

    Article  CAS  ADS  Google Scholar 

  55. Gulino, A., Taverner, A.E., Warren, S., Harris, P., and Egdell, R.G., A Photoemission Study of Sb-Doped TiO2, Surf. Sci., 1994, vol. 315, no. 3, pp. 351–361.

    Article  CAS  ADS  Google Scholar 

  56. Vogt, K.W., Kohl, P.A., Carter, W.B., Bell, R.A., and Bottomley, L.A., Characterization of Thin Titanium Oxide Adhesion Layers on Gold: Resistivity, Morphology, and Composition, Surf. Sci., 1994, vol. 301, nos. 1–3, pp. 203–213.

    Article  CAS  ADS  Google Scholar 

  57. Rahman, M.M., Krishna, K.M., Soga, T., Jimbo, T., and Umeno, M., Optical Properties and X-Ray Photoelectron Spectroscopic Study of Pure and Pb-Doped TiO2 Thin Films, J. Phys. Chem. Solids, 1999, vol. 60, no. 2, pp. 201–210.

    Article  CAS  ADS  Google Scholar 

  58. Hou, Y.-Q., Zhuang, D.-M., Zhang, G., Zhao, M., and Wu, M.-S., Influence of Annealing Temperature on the Properties of Titanium Oxide Thin Film, Appl. Surf. Sci., 2003, vol. 218, nos. 1–4, pp. 98–106.

    Article  ADS  CAS  Google Scholar 

  59. Mizushima, K., Tanaka, M., Asai, A., Iida, S., John, B., and Goodenough, J.B., Impurity Levels of Iron-Group Ions in TiO2(II), J. Phys. Chem. Solids, 1979, vol. 40, pp. 1129–1140.

    Article  CAS  ADS  Google Scholar 

  60. Mo, S.D., Lin, L.B., and Lin, D.L., Electro-States of Iron Group Impurities in Doped Rutile (TiO2), J. Phys. Chem. Solids, 1994, vol. 55, no. 11, pp. 1309–1313.

    Article  CAS  ADS  Google Scholar 

  61. Fujihara, S., Izumi, K., and Ohno, T., Time-Resolved Photoluminescence of Particulate TiO2 Photocatalysts Suspended in Aqueous Solutions, J. Photochem. Photobiol., A, 2000, vol. 132, pp. 99–104.

    Article  CAS  Google Scholar 

  62. Hiramoto, M., Hashimoto, K., and Sakata, T., Electron Transfer and Photoluminescence Dynamics of CdS Particles Deposited on Porous Vycor Glass, Chem. Phys. Lett., 1987, vol. 133, no. 5, pp. 440–444.

    Article  CAS  ADS  Google Scholar 

  63. Ohno, T., Haga, D., Fujihara, K., Kaizaki, K., and Matsumura, M., Unique Effects of Iron(III) Ions on Photocatalytic and Photoelectrochemical Properties of Titanium Dioxide, J. Phys. Chem. B, 1997, vol. 101, no. 33, pp. 6415–6419.

    Article  CAS  Google Scholar 

  64. Ohno, T., Izumi, S., Fujihara, K., and Matsumura, M., Electron-Hole Recombination via Reactive Intermediates Formed on PdO-Doped SrTiO3 Electrodes: Estimation from Comparison of Photoluminescence and Photocurrent, J. Photochem. Photobiol., A, 1999, vol. 129, no. 3, pp. 143–146.

    Article  CAS  Google Scholar 

  65. Ahmed, S., Jones, C.E., Kemp, T.J., and Unwin, P.R., The Role of Mass Transfer in Solution Photocatalysis at a Supported Titanium Dioxide Surface, Phys. Chem. Chem. Phys., 1999, vol. 1, pp. 5229–5233.

    Article  CAS  Google Scholar 

  66. Tan, T.T.Y., Zaw, M., Beydoun, D., and Amal, R., The Formation of Nano-Sized Selenium-Titanium Dioxide Composite Semiconductors by Photocatalysis, J. Nanopart. Res., 2002, vol. 4, pp. 541–552.

    Article  CAS  Google Scholar 

  67. Cermenati, L., Dondi, D., Fagnoni, M., and Albini, A., Titanium Dioxide Photocatalysis of Adamantane, Tetrahedron, 2003, vol. 59, pp. 6409–6414.

    Article  CAS  Google Scholar 

  68. Almquist, C.B. and Biswas, P., The Photo-Oxidation of Cyclohexane on Titanium Dioxide: An Investigation of Competitive Adsorption and Its Effects on Product Formation and Selectivity, Appl. Catal., A, 2001, vol. 214, pp. 259–271.

    Article  CAS  Google Scholar 

  69. Li, X. and Kutal, C.J., Photocatalytic Selective Epoxidation of Styrene by Molecular Oxygen over Highly Dispersed Titanium Dioxide Species on Silica, J. Mater. Sci. Lett., 2002, vol. 21, pp. 1525–1527.

    Article  CAS  Google Scholar 

  70. Topoglidis, E., Lutz, T., Willis, R.L., Barnett, C.J., Cass, A.E.G., and Durrant, J.R., Protein Adsorption on Nanoporous TiO2 Films: A Novel Approach to Studying Photoinduced Protein/Electrode Transfer Reactions, Faraday Discuss., 2000, vol. 116, pp. 35–46.

    Article  CAS  PubMed  Google Scholar 

  71. Bellobono, I.R., Morelli, R., and Chiodaroli, C.M.J., Photocatalysis and Promoted Photocatalysis during Photocrosslinking of Multifunctional Acrylates in Composite Membranes Immobilizing Titanium Dioxide, J. Photochem. Photobiol., A, 1997, vol. 105, pp. 89–94.

    Article  CAS  Google Scholar 

  72. Mrowetz, M., Balcerski, W., Colussi, A.J., and Hoffmann, M.R., Oxidative Power of Nitrogen-Doped TiO2 Photocatalysts under Visible Illumination, J. Phys. Chem. B, 2004, vol. 108, no. 45, pp. 17269–17273.

    Article  CAS  Google Scholar 

  73. Mills, A., Lee, S.-K., and Lepre, A., Photodecomposition of Ozone Sensitized by a Film of Titanium Dioxide on Glass, J. Photochem. Photobiol., A, 2003, vol. 155, nos. 1–3, pp. 199–205.

    Article  CAS  Google Scholar 

  74. Li, X., Quan, X., and Kutal, C., Synthesis and Photocatalytic Properties of Quantum Confined Titanium Dioxide Nanoparticle, Scr. Mater., 2004, vol. 50, pp. 499–505.

    Article  CAS  Google Scholar 

  75. Linsebigler, A., Lu, G., and Yates, J.T., Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev., 1995, vol. 95, pp. 735–758.

    Article  CAS  Google Scholar 

  76. Zakharenko, V.S. and Parmon, V.N., Spectral Dependences of Simultaneous Photogenerated Evolution of H2 and CO2 from a Pt/TiO2 Suspension in a 1 N H2SO4 Solution, Kinet. Katal., 1997, vol. 37, no. 3, pp. 427–430 [Kinet. Catal. (Engl. transl.), 1997, vol. 37, no. 3, pp. 402–405].

    Google Scholar 

  77. Kryukova, G.N., Zenkovets, G.A., and Parmon, V.N., HREM Study of Nanostructured Molybdenum and Vanadium Doped Titania Catalysts, React. Kinet. Catal. Lett., 2000, vol. 71, pp. 173–176.

    Article  CAS  Google Scholar 

  78. Wang, C.Y., Liu, C.Y., and Chen, J.J., The Surface Chemistry of Hybrid Nanometer-Sized Particles: II. Characterization and Microstructure of Au Clusters Supported on TiO2, J. Colloid Interface Sci., 1997, vol. 191, pp. 464–470.

    Article  CAS  PubMed  Google Scholar 

  79. Wang, C.Y., Liu, C.Y., Zheng, X., Chen, J., and Shen, T., The Surface Chemistry of Hybrid Nanometer-Sized Particles: I. Photochemical Deposition of Gold on Ultrafine TiO2 Particles, Colloids Surf., A, 1998, vol. 131, pp. 271–280.

    Article  CAS  Google Scholar 

  80. Sclafani, A., Palmisana, L., and Marci, G., Influence of Platinum on Catalytic Activity of Polycrystalline WO3 Employed for Phenol Photodegradation in Aqueous Suspension, Sol. Energy. Mater. Sol., 1998, vol. 51, pp. 203–219.

    Article  CAS  Google Scholar 

  81. Yang, J.C., Kirn, Y.C., Shul, Y.G., Shin, C.H., and Lee, T.K., Characterization of Photoreduced Pt/TiO2 and Decomposition of Dichloroacetic Acid over Photoreduced Pt/TiO2 Catalysts, Appl. Surf. Sci., 1997, vols. 121–122, pp. 525–529.

    Article  Google Scholar 

  82. Choi, W., Tennin, A., and Hoffmann, M.R., The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics, J. Phys. Chem., 1994, vol. 98, pp. 13669–13679.

    Article  Google Scholar 

  83. Zhang, F., Li, Q.L., Yang, J., and Zhang, Z., Study of Visible Spectral Sensitization of Nanocrystalline TiO2 Photocatalyst, J. Catal., 1999, vol. 20, no. 3, pp. 329–332.

    CAS  Google Scholar 

  84. Yang, P., Lu, C., Hua, N., and Du, Y., Titanium Dioxide Nanoparticles Co-Doped with Fe3+ and Eu3+ Ions for Photocatalysis, Mater. Lett., 2002, vol. 57, pp. 794–801.

    Article  CAS  Google Scholar 

  85. Yang, J.C., Kim, Y.C., Shul, Y.G., Shin, C.H., and Lee, T.K., Characterization of Photoreduced Pt/TiO2 and Decomposition of Dichloroacetic Acid over Photoreduced Pt/TiO2 Catalysts, Appl. Surf. Sci., 1997, vols. 121–122, pp. 525–529.

    Article  Google Scholar 

  86. Takaoka, G.H., Hamano, T., Fukushima, K., Matsuo, J., and Yamada, I., Preparation and Catalytic Activity of Nano-Scale Au Islands Supported on TiO2, Nucl. Instrum. Methods Phys. Res., Sect. B, 1997, vol. 121, nos. 1–4, pp. 503–506.

    Article  ADS  Google Scholar 

  87. Gopel, W., Rocker, G., and Feierabend, R., Intrinsic Defects of TiO2(110): Interaction with Chemisorbed O2, H2, CO, and CO2, Phys. Rev. B: Condens. Matter, 1983, vol. 28, no. 6, pp. 3427–3438.

    CAS  ADS  Google Scholar 

  88. Pan, J.M., Maschhoff, B.L., Diebold, U., and Madey, T.E., Structural Study of Ultrathin Metal Films on TiO2 Using LEED, ARXPS and MEED, Surf. Sci., 1993, vol. 291, no. 1, pp. 381–394.

    Article  CAS  ADS  Google Scholar 

  89. Zhang, Z.B., Wang, C.C., Zakaria, R., and Ying, J.Y., Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts, J. Phys. Chem. B, 1998, vol. 102, no. 52, pp. 10871–10878.

    Article  CAS  Google Scholar 

  90. Borgarello, E., Kiwi, J., Graetzel, M., Pelizzetti, E., and Visca, M., Visible Light Induced Water Cleavage in Colloidal Solutions of Chromium-Doped Titanium Dioxide Particles, J. Am. Chem. Soc., 1982, vol. 104, no. 11, pp. 2996–3002.

    Article  CAS  Google Scholar 

  91. Selcuk, H., Sene, J.J., Valnice, M., Zanoni, B., Sarikaya, H.Z., and Anderson, M.A., Behavior of Bromide in the Photoelectrocatalytic Process and Bromine Generation Using Nanoporous Titanium Dioxide Thin-Film Electrodes, Chemosphere, 2004, vol. 54, pp. 969–974.

    Article  CAS  PubMed  Google Scholar 

  92. Valnice, M., Zanonil, B., Sene, J.J., and Anderson, M.A., Photoelectrocatalytic Degradation of Remazol Brilliant Orange 3R on Titanium Dioxide Thin-Film Electrodes, J. Photochem. Photobiol., A, 2003, vol. 157, pp. 55–63.

    Article  CAS  Google Scholar 

  93. Traversa, E., Di Vona, M.L., and Licoccia, S., Sol-Gel Processed TiO2-Based Nano-Sized Powders for Use in Thick-Film Gas Sensors for Atmospheric Pollutant Monitoring, J. Sol-Gel Sci. Technol., 2001, vol. 22, pp. 167–179.

    Article  CAS  Google Scholar 

  94. Wei, D.T., Ion-Beam Interference Coating for Ultralow Optical Loss, Appl. Opt., 1989, vol. 28, no. 14, pp. 2813–2816.

    Article  CAS  ADS  Google Scholar 

  95. Kim, H.S., Gilmer, D.C., Campbell, S.A., and Polla, D.L., Leakage Current and Electrical Breakdown in Metal-Organic Chemical Vapor Deposited TiO2 Dielectrics on Silicon Substrates, Appl. Phys. Lett., 1996, vol. 69, no. 25, pp. 3860–3862.

    Article  CAS  ADS  Google Scholar 

  96. Mao, A.Y., Son, K.A., White, J.M., Kwong, D.L., Roberts, D.A., and Vrtis, R.N., Effects of Vacuum and Inert Gas Annealing of Ultrathin Tantalum Pentoxide Films on Si(100), J. Vac. Sci. Technol., A, 1999, vol. 17, no. 3, pp. 954–960.

    Article  CAS  ADS  Google Scholar 

  97. Campbell, S.A., Kim, H.S., Gilmer, D.C., He, B., Ma, T., and Gladfelter, W.L., Titanium Dioxide (TiO2)-Based Gate Insulators, IBM J. Res. Dev., 1999, vol. 43, no. 3, pp. 383–392.

    Article  CAS  Google Scholar 

  98. Poelman, H., Poelman, D., Depla, D., Tomaszewski, H., Fiermans, L., and De Gryse, R., Electronic and Optical Characterization of TiO2 Films Deposited from Ceramic Targets, Surf. Sci., 2001, vols. 482–485, pp. 940–945.

    Article  Google Scholar 

  99. Okimura, K., Maeda, N., and Shibata, A., Characteristics of Rutile TiO2 Films Prepared by R.F. Magnetron Sputtering at a Low Temperature, Thin Solid Films, 1996, vols. 281–282, nos. 1–2, pp. 427–430.

    Article  Google Scholar 

  100. Wang, Z., Helmersson, U., and Kall, P.-O., Optical Properties of Anatase TiO2 Thin Films Prepared by Aqueous Sol-Gel Process at Low Temperature, Thin Solid Films, 2002, vol. 405, pp. 50–54.

    Article  CAS  ADS  Google Scholar 

  101. Wiggins, M.D., Nelson, M.C., and Aita, C.R., Phase Development in Sputter Deposited Titanium Dioxide, J. Vac. Sci. Technol., A, 1996, vol. 14, no. 3, pp. 772–776.

    Article  CAS  ADS  Google Scholar 

  102. Suhail, M.H., Mohan Rao, G., and Mohan, S.J., DC Reactive Magnetron Sputtering of Titanium-Structural and Optical Characterization of TiO2 Films, J. Appl. Phys., 1992, vol. 71, no. 3, pp. 1421–1427.

    Article  CAS  ADS  Google Scholar 

  103. Nadel, S.J., Greene, P., Rietzel, J., and Strumpfel, J., Equipment, Materials, and Processes: A Review of High Rate Sputtering Technology for Glass Coating, Thin Solid Films, 2003, vol. 442, pp. 11–14.

    Article  CAS  ADS  Google Scholar 

  104. Larsson, C., Emanuelsson, L., Thomsen, P., Ericson, L.E., Aronsson, B.-O., Kasemo, B., and Lausmaa, J., Bone Response to Surface Modified Titanium Implants—Studies on the Tissue Response after 1 Year to Machined and Electropolished Implants with Different Oxide Thicknesses, J. Mater. Sci. Mater. Med., 1997, vol. 8, no. 12, pp. 721–729.

    Article  CAS  PubMed  Google Scholar 

  105. Leng, Y.X., Chen, J.Y., Zeng, Z.M., Tian, X.B., Yang, P., Huang, N., Zhou, Z.R., and Chu, P.K., Properties of Titanium Oxide Biomaterials Synthesized by Titanium Plasma Immersion Ion Implantation and Reactive Ion Oxidation, Thin Solid Films, 2000, vols. 377–378, pp. 573–577.

    Article  Google Scholar 

  106. Scharnweber, D., Beutner, R., Rösler, S., and Worch, H., Electrochemical Behavior of Titanium-Based Materials—Are There Relations to Biocompatibility?, J. Mater. Sci.: Mater. Med., 2002, vol. 13, pp. 1215–1220.

    Article  CAS  Google Scholar 

  107. Feng, B., Chen, J.Y., Qi, S.K., He, L., Zhao, J.Z., and Zhang, X.D., Characterization of Surface Oxide Films on Titanium and Bioactivity, J. Mater. Sci.: Mater. Med., 2002, vol. 13, no. 5, pp. 457–464.

    Article  CAS  Google Scholar 

  108. Leng, Y.X., Huang, N., Yang, P., Chen, J.Y., Sun, H., Wang, J., Wan, G.J., Leng, Y., and Chu, P.K., Influence of Oxygen Pressure on the Properties and Biocompatibility of Titanium Oxide Fabricated by Metal Plasma Ion Implantation and Deposition, Thin Solid Films, 2002, vols. 420–421, pp. 408–413.

    Article  Google Scholar 

  109. Feng, B., Weng, J., Yang, B.C., Qu, S.X., and Zhang, X.D., Characterization of Surface Oxide Films on Titanium and Adhesion of Osteoblast, Biomaterials, 2003, vol. 24, no. 25, pp. 4663–4670.

    Article  CAS  PubMed  Google Scholar 

  110. Huang, N., Yang, P., Leng, Y.X., Chen, J.Y., Sun, H., Wang, J., Wang, G.J., Ding, P.D., Xi, T.F., and Leng, Y., Hemocompatibility of Titanium Oxide Films, Biomaterials, 2003, vol. 24, no. 13, pp. 2177–2187.

    Article  CAS  PubMed  Google Scholar 

  111. Hiromoto, S., Hanawa, T., and Asam, K., Composition of Surface Oxide Film of Titanium with Culturing Murine Fibroblasts L929, Biomaterials, 2004, vol. 25, no. 6, pp. 979–986.

    Article  CAS  PubMed  Google Scholar 

  112. Negishi, N., Takeuchi, K., and Ibusuki, T., The Surface Structure of Titanium Dioxide Thin Film Photocatalyst, Appl. Surf. Sci., 1997, vol. 121–122, pp. 417–420.

    Article  Google Scholar 

  113. Yu, J., Zhao, X., and Zhao, Q., Effect of Film Thickness on the Grain Size and Photocatalytic Activity of the Sol-Gel Derived Nanometer TiO2 Thin Films, J. Mater. Sci. Lett., 2000, vol. 19, pp. 1015–1017.

    Article  CAS  Google Scholar 

  114. Watanabe, T., Fukayama, S., Miyauchi, M., Fujishima, A., and Hashimoto, K., Photocatalytic Activity and Photo-Induced Wettability Conversion of TiO2 Thin Film Prepared by Sol-Gel Process on a Soda-Lime Glass, J. Sol-Gel Sci. Technol., 2000, vol. 19, pp. 71–76.

    Article  CAS  Google Scholar 

  115. Hattori, A. and Tada, H.J., High Photocatalytic Activity of F-Doped TiO2 Film on Glass, Sol-Gel Sci. Technol., 2001, vol. 22, pp. 47–52.

    Article  CAS  Google Scholar 

  116. Negishi, N. and Takeuchi, K.J., Preparation of TiO2 Thin Film Photocatalysts by Dip Coating Using a Highly Viscous Solvent, Sol-Gel Sci. Technol., 2001, vol. 22, pp. 23–31.

    Article  CAS  Google Scholar 

  117. Negishi, N., Takeuchi, K., and Ibusuki, T., Surface Structure of the TiO2 Thin Film Photocatalyst, J. Mater. Sci., 1998, vol. 33, pp. 5789–5794.

    Article  CAS  Google Scholar 

  118. Negishi, N., Takeuchi, K., and Ibusuki, T., Preparation of the TiO2 Thin Film Photocatalyst by the Dip-Coating Process, J. Sol-Gel Sci. Technol., 1998, vol. 13, pp. 691–694.

    Article  CAS  Google Scholar 

  119. O’Neill, S.A., Parkin, I.P., Clark, R.J.H., Mills, A., and Elliott, N., Atmospheric Pressure Chemical Vapour Deposition of Titanium Dioxide Coatings on Glass, J. Mater. Chem., 2002, vol. 13, no. 1, pp. 56–60.

    Article  CAS  Google Scholar 

  120. Mills, A., Lee, S.-K., Lepre, A., Parkin, I.P., and O’Neill, S.A., Spectral and Photocatalytic Characteristics of TiO2 CVD Films on Quartz, Photochem. Photobiol. Sci., 2002, vol. 1, no. 11, pp. 865–868.

    Article  CAS  PubMed  Google Scholar 

  121. Mills, A., Elliott, N., Parkin, I.P., O’Neill, S.A., and Clark, R.J., Novel TiO2 CVD Films for Semiconductor Photocatalysis, J. Photochem. Photobiol., A, 2002, vol. 151, no. 1, pp. 171–179.

    Article  CAS  Google Scholar 

  122. Justicia, I., Garcia, G., Vazquez, L., Santiso, J., Ordejon, P., Battiston, G., Gerbasi, R., and Figueras, A., Self-Doped Titanium Oxide Thin Films for Efficient Visible Light Photocatalysis: An Example: Nonylphenol Photodegradation, Sens. Actuators, B, 2005, vol. 109, pp. 52–56.

    Article  CAS  Google Scholar 

  123. Masahiko, M. and Teruyoshi, W., Evaluation of Photocatalytic Properties of Titanium Oxide Films Prepared by Plasma-Enhanced Chemical Vapor Deposition, Thin Solid Films, 2005, vol. 489, pp. 320–324.

    Article  ADS  CAS  Google Scholar 

  124. Gracia, F., Holgado, J.P., Caballero, A., and Gonzalez-Elipe, A.R., Structural, Optical, and Photoelectrochemical Properties of Mn+-TiO2 Model Thin Film, J. Phys. Chem. B, 2004, vol. 108, no. 45, pp. 17466–17476.

    Article  CAS  Google Scholar 

  125. Justicia, I., Garcia, G., Battison, G.A., Gerbasi, R., Ager, F., Guerra, M., Caixach, J., Pardo, J.A., Rivera, J., and Figueras, A., Photocatalysis in the Visible Range of Sub-Stoichiometric Anatase Films Prepared by MOCVD, Electrochim. Acta, 2005, vol. 50, pp. 4605–4608.

    Article  CAS  Google Scholar 

  126. Takeuchi, M., Tsujimaru, K., Sakamoto, K., Matsuoka, M., Yamashita, H., and Anpo, M., Effect of Pt Loading on the Photocatalytic Reactivity of Titanium Oxide Thin Films Prepared by Ion Engineering Techniques, Res. Chem. Intermed., 2003, vol. 29, no. 6, pp. 619–629.

    Article  CAS  Google Scholar 

  127. Van de Krol, R. and Goossens, A., Structure and Properties of Anatase TiO2 Thin Films Made by Reactive Electron Beam Evaporation, J. Vac. Sci. Technol., A, 2003, vol. 21, no. 1, pp. 76–83.

    Article  ADS  CAS  Google Scholar 

  128. Bally, A.Z., Korobeinikova, E.N., Schmid, P.E., Levy, F., and Bussy, F., Structural and Electrical Properties of Fe-Doped TiO2 Thin Films, J. Phys. D: Appl. Phys., 1998, vol. 31, pp. 1149–1154.

    Article  CAS  ADS  Google Scholar 

  129. Hiratani, M., Kadoshima, M., Hirano, T., Shimamoto, Y., Matsui, Y., Nabatame, T., Torii, K., and Kimura, S., Ultra-Thin Titanium Oxide Film with a Rutile-Type Structure, Appl. Surf. Sci., 2003, vol. 207, nos. 1–4, pp. 13–19.

    Article  CAS  ADS  Google Scholar 

  130. Zeman, P. and Takabayashi, S., Self-Cleaning and Antifogging Effects of TiO2 Films Prepared by Radio Frequency Magnetron Sputtering, J. Vac. Sci. Technol., A, 2002, vol. 20, no. 2, pp. 388–393.

    Article  CAS  ADS  Google Scholar 

  131. Sirghi, L. and Hatanaka, Y., Hydrophilicity of Amorphous TiO2 Ultra-Thin Films, Surf. Sci., 2003, vol. 530, pp. 323–327.

    Article  CAS  Google Scholar 

  132. Takahashi, T., Nakabayashi, H., Terasawa, T., and Masugata, K., Atomic Force Microscopy Observation of TiO2 Films Deposited by DC Reactive Sputtering, J. Vac. Sci. Technol., A, 2002, vol. 20, no. 4, pp. 1205–1209.

    Article  CAS  ADS  Google Scholar 

  133. Wenjie, Z., Ying, L., Shenglong, Z., and Fuhui, W., Influence of Argon Flow Rate on TiO2 Photocatalyst Film Deposited by DC Reactive Magnetron Sputtering, Surf. Coat. Technol., 2004, vol. 182, pp. 192–198.

    Article  CAS  Google Scholar 

  134. Martinez, A.I., Acosta, D.R., and Lopez, A.A., Effect of Deposition Methods on the Properties of Photocatalytic TiO2 Thin Films Prepared by Spray Pyrolysis and Magnetron Sputtering, J. Phys.: Condens. Matter, 2004, vol. 16, pp. 2335–2344.

    Article  ADS  CAS  Google Scholar 

  135. Mikula, M., Ceppan, M., Kindernay, J., and Buc, D., Photoelectrochemical Properties of TiOx Layers Prepared by DC Pulsed Unbalanced Reactive Magnetron Sputtering, Cesk. Cas. Fyz. (Czech. J. Phys., Sect. A), 1999, vol. 49, no. 3, pp. 393–403.

    CAS  ADS  Google Scholar 

  136. Peng, X. and Chen, A., Aligned TiO2 Nanorod Arrays Synthesized by Oxidizing Titanium with Acetone, J. Mater. Chem., 2004, vol. 14, pp. 2542–2548.

    Article  CAS  Google Scholar 

  137. Wang, X., Zhang, F., Zheng, Z., Li, C., Chen, L., Wang, H., and Liu, X., Effect of O2 Pressure on the Synthesis of Titanium Oxide Film by Ion Beam Enhanced Deposition, Mater. Lett., 2000, vol. 44, no. 2, pp. 105–109.

    Article  CAS  Google Scholar 

  138. Zhang, W., Li, Y., Zhu, S., and Wang, F., Surface Modification of TiO2 Film by Iron Doping Using Reactive Magnetron Sputtering, Chem. Phys. Lett., 2003, vol. 373, no. 3, pp. 333–337.

    Article  CAS  ADS  Google Scholar 

  139. Wenjie, Z., Ying, L., Shenglong, Z., and Fuhui, W., Copper Doping in Titanium Oxide Catalyst Film Prepared by DC Reactive Magnetron Sputtering, Catal. Today, 2004, vols. 93–95, pp. 589–594.

    Google Scholar 

  140. Zhang, W., Li, Y., Zhu, S., and Wang, F., Fe-Doped Photocatalytic TiO2 Film Prepared by Pulsed DC Reactive Magnetron Sputtering, J. Vac. Sci. Technol., A, 2003, vol. 21, no. 6, pp. 1877–1882.

    Article  CAS  ADS  Google Scholar 

  141. Zywitzki, O., Modes, T., Sahm, H., Frach, P., Goedicke, K., and Glob, D., Structure and Properties of Crystalline Titanium Oxide Layers Deposited by Reactive Pulse Magnetron Sputtering, Surf. Coat. Technol., 2004, vols. 180–181, pp. 538–543.

    Article  CAS  Google Scholar 

  142. Heller, J., Reactive Sputtering of Metals in Oxidizing Atmospheres, Thin Solid Films, 1973, vol. 17, pp. 163–176.

    Article  CAS  ADS  Google Scholar 

  143. Barankova, H., Berg, S., Nender, C., and Carlsson, P., Hysteresis Effects in the Sputtering Process Using Two Reactive Gases, Thin Solid Films, 1995, vol. 260, no 2, pp. 181–186.

    Article  CAS  ADS  Google Scholar 

  144. Hohnke, D.K., Schmatz, D.J., and Hurley, M.D., Reactive Sputter Deposition: A Quantitative Analysis, Thin Solid Films, 1984, vol. 118, pp. 301–310.

    Article  CAS  ADS  Google Scholar 

  145. Kusano, E., An Investigation of Hysteresis Effects as a Function of Pumping Speed, Sputtering Current, and O2/Ar Ratio, in Ti-O2 Reactive Sputtering Processes, J. Appl. Phys., 1991, vol. 70, pp. 7089–7096.

    Article  CAS  ADS  Google Scholar 

  146. Schiller, S., Beister, G., and Seiber, W., Reactive High Rate D.C. Sputtering: Deposition Rate, Stoichiometry, and Features of TiOx and TiNx Films with Respect to the Target Mode, Thin Solid Films, 1984, vol. 111, pp. 259–268.

    Article  CAS  ADS  Google Scholar 

  147. Steenbeck, K., Steinbeiss, E., and Ufert, K.-D., The Problem of Reactive Sputtering and Cosputtering of Elemental Targets, Thin Solid Films, 1982, vol. 92, pp. 371–380.

    Article  CAS  ADS  Google Scholar 

  148. Belkind, A., Freilich, A., Lopez, J., Zhao, Z., Zhu, W., and Becker, K., Characterization of Pulsed DC Magnetron Sputtering Plasmas, New J. Phys., 2005, vol. 7, pp. 1–16.

    Article  CAS  Google Scholar 

  149. Ogwu, A.A., Bounquerel, E., Ademosu, O., Moh, S., Crossan, E., and Placido, F., The Influence of RF Power and Oxygen Flow Rate during Deposition on the Optical Transmittance of Copper Oxide Thin Films Prepared by Reactive Magnetron Sputtering, J. Phys. D: Appl. Phys, 2005, vol. 38, pp. 266–271.

    Article  CAS  ADS  Google Scholar 

  150. Schiller, S., Heisig, U., Steinfelder, K., and Strumpfel, J., Reactive D.C. Sputtering with the Magnetron-Plasmatron for Tantalum Pentoxide and Titanium Dioxide Films, Thin Solid Films, 1979, vol. 63, pp. 369–375.

    Article  CAS  ADS  Google Scholar 

  151. Thornton, J.A., Substrate Heating in Cylindrical Magnetron Sputtering Sources, Thin Solid Films, 1978, vol. 54, pp. 23–31.

    Article  CAS  ADS  Google Scholar 

  152. Jain, P., Juneja, J.S., Bahgwat, V., Rymaszewski, E.J., Lu, T.-M., and Cale, T.S., Effects of Substrate Temperature on Properties of Pulsed DC Reactively Sputtered Tantalum Oxide Films, J. Vac. Sci. Technol., A, 2005, vol. 23, no. 3, pp. 512–519.

    Article  CAS  ADS  Google Scholar 

  153. Dushman, S., Scientific Foundations of Vacuum Technique, New York: Wiley, 1962. Translated under the title Nauchnye osnovy vakuumnoi tekhniki, Moscow: Mir, 1964.

    Google Scholar 

  154. Von Keudell, A., Surface Processes during Thin Film Grow, Plasma Sources Sci. Technol., 2000, vol. 9, pp. 455–467.

    Article  ADS  Google Scholar 

  155. Babu, P.M., Rao, G.V., Reddy, P.S., and Uthanna, S., Bias Voltage Dependence Properties of Cadmium Oxide Films Deposited by D.C. Reactive Magnetron Sputtering, J. Mater. Sci.: Mater. Electron., 2004, vol. 15, no. 6, pp. 389–394.

    Article  CAS  Google Scholar 

  156. Kinio, O. and Oyanagi, J., Dynamic Control of Substrate Bias for Highly c-Axis Textured Thin Ferromagnetic CoCrTa Film in Inductively Coupled Plasma-Assisted Sputtering, J. Vac. Sci. Technol., A, 2005, vol. 23, no. 1, pp. 39–43.

    Article  ADS  CAS  Google Scholar 

  157. Yang, Z.W., Han, S.H., Yang, T.L., Ye, L., Zhang, D.H., Ma, H.L., and Cheng, C.F., Bias Voltage Dependence of Properties for Depositing Transparent Conducting ITO Films on Flexible Substrate, Thin Solid Films, 2000, vol. 366, nos. 1–2, pp. 4–7.

    Article  CAS  ADS  Google Scholar 

  158. Chen, S.-F. and Wang, C.-W., Effects of Deposition Temperature on the Conduction Mechanisms and Reliability of Radio Frequency Sputtered TiO2 Thin Films, J. Vac. Sci. Technol., B, 2002, vol. 20, no. 1, pp. 263–270.

    Article  CAS  Google Scholar 

  159. Takahashi, T. and Nakabayashi, H.J., Effect of Plasma Exposure on Structural and Optical Properties of TiO2 Films Deposited by Off-Axis Target Sputtering, J. Vac. Sci. Technol., A, 2002, vol. 20, no. 6, pp. 1916–1920.

    Article  CAS  ADS  Google Scholar 

  160. Takahashi, T., Nakabayashi, H., Tanabe, J., and Yamada, N., Correlation between Crystallographic Orientations and Raman Spectra of TiO2 Sputtered Films with Changing Degrees of Plasma Exposure, J. Vac. Sci. Technol., A, 2003, vol. 21, no. 4, pp. 1419–1423.

    Article  CAS  ADS  Google Scholar 

  161. Takahashi, T., Nakabayashi, H., Yamada, N., and Tanabe, J., Photocatalytic Properties of TiO2/WO3 Bilayers Deposited by Reactive Sputtering, J. Vac. Sci. Technol., A, 2003, vol. 21, no. 4, pp. 1409–1413.

    Article  CAS  ADS  Google Scholar 

  162. Wang, S.-F., Hsu, Y.-F., Lee, R.-L., and Lee, Y.-S., Microstructural Evolution and Phase Development of Nb and Y Doped TiO2 Films Prepared by RF Magnetron Sputtering, Appl. Surf. Sci., 2004, vol. 229, pp. 140–147.

    Article  CAS  ADS  Google Scholar 

  163. Zheng, S.K., Wang, T.M., and Weng, C., Fabrication, Photocatalytic Activity, and Surface Modification of Nanoporous TiO2 Photocatalytic Thin Film, J. Mater. Sci. Lett., 2002, vol. 21, no. 18, pp. 1465–1467.

    Article  CAS  Google Scholar 

  164. Sheng, J., Shivalingappa, L., Karasawa, J., and Fukami, T., Low-Temperature Formation of Photocatalytic Pt-Anatase Film by Magnetron Sputtering, J. Mater. Sci., 1999, vol. 34, no. 24, pp. 6201–6206.

    Article  CAS  Google Scholar 

  165. Prabakar, K., Takahashi, T., Nezuka, T., Takahashi, K., Nakashima, T., Kubota, Y., and Fujishima, A., Visible Light-Active Nitrogen-Doped TiO2 Thin Films Prepared by DC Magnetron Sputtering Used as a Photocatalyst, Renewable Energy, 2008, vol. 33, pp. 277–281.

    Article  CAS  Google Scholar 

  166. Venkataraj, S., Severin, D., Mohamed, S.H., Ngaruiya, J., Kappertz, O., and Wuttig, M., Towards Understanding the Superior Properties of Transition Metal Oxynitrides Prepared by Reactive DC Magnetron Sputtering, Thin Solid Films, 2006, vol. 502, pp. 228–234.

    Article  CAS  ADS  Google Scholar 

  167. Glaser, A., Surnev, S., Netzer, F.P., Fateh, N., Fontalvo, G.A., and Mitterer, C., Oxidation of Vanadium Nitride and Titanium Nitride Coatings, Surf. Sci., 2007, vol. 601, pp. 1153–1159.

    Article  CAS  ADS  Google Scholar 

  168. Martin, N., Lintymer, J., Gavoille, J., Chappé, J.M., Sthal, F., Takadoum, J., Vax, F., and Rebouta, L., Reactive Sputtering of TiOxNy Coatings by the Reactive Gas Pulsing Process: Pt I. Pattern and Period of Pulses, Surf. Coat. Technol., 2007, vol. 201, pp. 7720–7726.

    Article  CAS  Google Scholar 

  169. Martin, N., Lintymer, J., Gavoille, J., Chappé, J.M., Sthal, F., Takadoum, J., Vaz, F., and Rebouta, L., Reactive Sputtering of TiOxNy Coatings by the Reactive Gas Pulsing Process: Pt II. The Role of the Duty Cycle, Surf. Coat. Technol., 2007, vol. 201, pp. 7727–7732.

    Article  CAS  Google Scholar 

  170. Martin, N., Lintymer, J., Gavoille, J., Chappé, J.M., Sthal, F., Takadoum, J., Vaz, F., and Rebouta, L., Reactive Sputtering of TiOxNy Coatings by the Reactive Gas Pulsing Process: Pt III. The Particular Case of Exponential Pulses, Surf. Coat. Technol., 2007, vol. 201, pp. 7733–7738.

    Article  CAS  Google Scholar 

  171. Chappe, J.-M., Martin, N., Lintymer, J., Sthal, F., Terwagne, G., and Takadoum, J., Titanium Oxynitride Thin Films Sputter Deposited by the Reactive Gas Pulsing Process, Appl. Surf. Sci., 2007, vol. 253, pp. 5312–5316.

    Article  CAS  ADS  Google Scholar 

  172. Lin, M.-C., Chang, L.-S., and Lin, H.C., Gas Barrier Properties of Titanium Oxynitride Films Deposited on Polyethylene Terephthalate Substrates by Reactive Magnetron Sputtering, Appl. Surf. Sci., 2008, vol. 254, pp. 3509–3516.

    Article  CAS  ADS  Google Scholar 

  173. Song, X., Gopireddy, D., and Takoudis, C.G., Characterization of Titanium Oxynitride Films Deposited by Low Pressure Chemical Vapor Deposition Using Amide Ti Precursor, Thin Solid Films, 2008, vol. 516, pp. 6330–6335.

    Article  CAS  ADS  Google Scholar 

  174. Okada, M., Yamada, Y., Jin, P., Tazawa, M., and Yoshimura, K., Two-Step Nitridation of Photocatalytic TiO2 Films by Low Energy Ion Irradiation, Appl. Surf. Sci., 2007, vol. 254, pp. 156–159.

    Article  CAS  ADS  Google Scholar 

  175. Chen, S.-Z., Zhang, P.-Y., Zhuang, D.-M., and Zhu, W.-P., Investigation of Nitrogen Doped TiO2 Photocatalytic Films Prepared by Reactive Magnetron Sputtering, Catal. Commun., 2004, vol. 5, pp. 677–680.

    Article  CAS  Google Scholar 

  176. Gomez, M., Rodriguez, J.., Lindquist, S.-E., and Granqvist, C.G., Photoelectrochemical Studies of Dye-Sensitized Polycrystalline Titanium Oxide Thin Films Prepared by Sputtering, Thin Solid Films, 1999, vol. 342, pp. 148–152.

    Article  CAS  ADS  Google Scholar 

  177. Okada, M., Yamada, Y., Jin, P., Tazawa, M., and Yoshimura, K., Fabrication of Multifunctional Coating Which Combines Low-E Property and Visible-Light-Responsive Photocatalytic Activity, Thin Solid Films, 2003, vol. 442, pp. 271–221.

    Article  CAS  Google Scholar 

  178. Chu, S.-Z., Inoue, S., Wada, K., Li, D., and Haneda, H.J., Highly Porous TiO2/Al2O3 Composite Nanostructures on Glass by Anodization and the Sol-Gel Process: Fabrication and Photocatalytic Characteristics, J. Mater. Chem., 2003, vol. 13, no. 4, pp. 866–870.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Shapovalov.

Additional information

Original Russian Text © V.I. Shapovalov, 2010, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapovalov, V.I. Nanopowders and films of titanium oxide for photocatalysis: A review. Glass Phys Chem 36, 121–157 (2010). https://doi.org/10.1134/S108765961002001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765961002001X

Key words

Navigation