Skip to main content
Log in

Formation of organic-inorganic composite materials based on cellulose Acetobacter xylinum and calcium phosphates for medical applications

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The formation of composites based on the cellulose Acetobacter xylinum and calcium phosphates has been investigated using X-ray diffraction, electron diffraction, electron microscopy, energy-dispersive analysis, and differential scanning calorimetry. It has been demonstrated that the planar morphology of calcium phosphate nanoparticles capable of interacting with nanofibrils of the cellulose matrix is an important factor providing interfacial contacts in the formation of organic-inorganic composite materials. It has been established that magnesium-containing calcium phosphates represent two-phase systems consisting of calcium magnesium phosphate Ca2.6Mg0.4(PO4)2 (whitlockite) and hydroxyapatite Ca5(PO4)3(OH). The biocompatibility of the composite materials based on two-phase calcium phosphate systems and the temperature range of their stability (∼20–250°C) determined by the thermal stability of the organic component have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khripunov, A.K., Baklagina, Yu.G., Sinyaev, V.A., Shustikova, E.S., Paramonov, B.A., Romanov, D.P., Smyslov, R.Yu., and Tkachenko, A.A., Investigation of Nanocomposites Based on Hydrated Calcium Phosphates and Cellulose Acetobacter xylinum, Fiz. Khim. Stekla, 2008, vol. 34, no. 2, pp. 248–258 [Glass Phys. Chem. (Engl. transl.), 2008, vol. 34, no. 2, pp. 192–200].

    Google Scholar 

  2. Baklagina, Yu.G., Lukasheva, N.V., Khripunov, A.K., Klechkovskaya, V.V., Arkharova, N.A., Romanov, D.P., and Tolmachev, D.A., Interaction between Nanosized Crystalline Components of a Composite Based on Acetobacter xylinum Cellulose and Calcium Phosphates, Vysokomol. Soedin., Ser. A., 2010, vol. 52, no. 4, pp. 615–627 [Polym. Sci., Ser. A Engl. transl.), 2010, vol. 52, no. 4, pp. 419–429].

    CAS  Google Scholar 

  3. Wan, Y.Z., Hong, L., Jia, S.R., Huang, Y., Zhu, Y., Wang, Y.L., and Jiang, H.J., Synthesis and Characterization of Hydroxyapatite-Bacterial Cellulose Nanocomposites, Compos. Sci. Technol., 2006, vol. 66, pp. 1825–1832.

    Article  CAS  Google Scholar 

  4. Wan, Y.Z., Huang, Y., Yan, C.D., Raman, S., Zhu, Y., Jiang, H.J., He, F., and Gao, C., Biomimetic Synthesis of Hydroxyapatite-Bacterial Cellulose Nanocomposites for Biomedical Application, Mater. Sci. Eng., C 2007, vol. 27, pp. 855–864.

    Article  CAS  Google Scholar 

  5. Barinov, S.M. and Komlev, V.S., Biokeramika na osnove fosfatov kal’tsiya (Bioceramics Based on Calcium Phosphates), Moscow: Nauka, 2005 [in Russian].

    Google Scholar 

  6. Glimcher, M., Molecular Biology of Mineralized Tissues, Specifically, Bone Tissues, in Biophysical Science: A Study Program, New York: Wiley, 1959, vol. II. Translated under the title Sovremennye problemy biofiziki, Moscow: Inostrannaya Literatura, 1961, vol. II.

    Google Scholar 

  7. Gonzalez, M., Hernandez, E., Ascencio, J.A., Pacheco, F., Pacheco, S., and Rodriguez, R., Hydroxyapatite Crystals Grown on a Cellulose Matrix Using Titanium Alkoxide as a Coupling Agent, J. Mater. Chem., 2003, vol. 13, no. 12, pp. 2948–2951.

    Article  CAS  Google Scholar 

  8. Legeros, R.Z., Lin, S., Rohanizaden, R., Mijares, D., and Legeros, J.P., Biphasic Calcium Phosphate Bioceramics: Preparation, Properties, and Applications, J. Mater. Sci.: Mater. Med., 2003, vol. 14, pp. 201–209.

    Article  CAS  Google Scholar 

  9. Wan, A.A., Khor, E., and Hastings, G.W., Hydroxyapatite Modified Chitin as Potential Hard Tissue Substitute Material, J. Biomed. Mater. Res., 1997, vol. 38, pp. 235–241.

    Article  CAS  PubMed  Google Scholar 

  10. Hu, Q., Li, B., Wang, M., and Shen, J., Preparation of Bioactive Chitosan-Hydroxyapatite Nanocomposite Rods via In Situ Hybritisation: A Potential Material as Internal Fixation of Bone Fracture, Biomaterials, 2004, vol. 25, pp. 779–785.

    Article  CAS  PubMed  Google Scholar 

  11. Chang, M.C., Ko, C.C., and Douglas, W.H., Preparation of Hydroxyapatite-Gelatine Nanocomposites, Biomaterials, 2003, vol. 24, pp. 2853–2862.

    Article  CAS  PubMed  Google Scholar 

  12. Rosseeva, E.V., Buder, J., Simon, P., Schwarz, U., Frank-Kamenetskaya, O.V., and Kniep, R., Synthesis, Characterization, and Morphogenesis of Carbonated Fluorapatite-Gelatine Nanocomposites: A Complex Biomimetic Approach toward the Mineralization of Hard Tissues, Chem. Mater., 2008, vol. 20, no. 19, pp. 6003–6013.

    Article  CAS  Google Scholar 

  13. Mucalo, M.R., Yokogawa, Y., Toriyama, M., Suzuki, T., Kawamoto, Y., Nagata, F., and K. Nishizawa, Growth of Calcium Phosphate on Surface-Modified Cotton, J. Mater. Sci.: Mater. Med., 1995, vol. 6, pp. 597–605.

    Article  CAS  Google Scholar 

  14. Wang, L., Nemoto, R., and Senna, M., Effects of Alkali Pretreatment of Silk Fibroin on Microstructure and Properties of Hydroxyapatite-Silk Fibroin Nanocomposite, J. Mater. Sci.: Mater. Med., 2004, vol. 5, pp. 261–265.

    Article  Google Scholar 

  15. Helenius, G., Bäckdahl, H., Bodin, A., Nanmark, U., Gatenholm, P., and Risberg, B., In Vivo Biocompatibility of Bacterial Cellulose, J. Biomed. Mater. Res., Part A, 2006, vol. 76, no. 2, 431–438.

    Article  Google Scholar 

  16. Cellulose and Cellulose Derivatives, Bikales, N. and Segal, L., Eds., New York: Wiley, 1971, vol. 2. Translated under the title Tsellyuloza i ee proizvodnye, Moscow: Mir, 1974, vol. 2.

    Google Scholar 

  17. Khripunov, A.K., Tkachenko, A.A., Moskvicheva, Yu.G., Sedova, L.E., Ferofontova, S.D., Baklagina, Yu.G., Noskin, V.A., and Klenin, S.I., Biosynthesis of Cellulose Acetobacter xylinum, in Biotekhnologiya i genetika (Biotechnology and Genetics), Nizhnii Novgorod, 1991, pp. 54–64 [in Russian].

  18. Sinyaev, V.A., Levchenko, L.V., Shustikova, E.S., and Griggs, J., Calcium Phosphates Coprecipitated from Aqueous Solutions of Sodium Monophosphate and Diphosphate, Zh. Prikl. Khim. (St. Petersburg), 2003, vol. 76, no. 4, pp. 529–532 [Russ. J. Appl. Chem. (Engl. transl.), vol. 76, no. 4, pp. 509–512].

    Google Scholar 

  19. Baklagina, Yu.G., Khripunov, A.K., Tkachenko, A.A., Kopeikin, V.V., Matveeva, N.A., Lavrent’ev, V.K., Nilova, V.K., Sukhanova, T.E., Smyslov, R.Yu., Zanaveskina, I.S., Klechkovskaya, V.V., and Feigin, L.A., Sorption Properties of Gel Films of Bacterial Cellulose, Zh. Prikl. Khim. (St. Petersburg), 2005, vol. 78, no. 7, pp. 1197–1202 [Russ. J. Appl. Chem. (Engl. transl.), 2005, vol. 78, no. 7, pp. 1176–1182].

    Google Scholar 

  20. Klechkovskaya, V.V., Volkov, V.V., Shtykova, E.V., Arkharova, N.A., Baklagina, Yu.G., Khripunov, A.K., Smyslov, R.Yu., Borovikova, L.N., and Tkachenko, A.A., Network Model of Acetobacter Xylinum Cellulose Intercalated by Drug Nanoparticles, in Nanomaterials for Application in Medicine and Biology, NATO Science for Peace and Security. Series B: Physics and Biophysics, Giersig, M., and Khomutov, G.B., Eds., Dordrecht, The Netherlands: Springer, 2008, pp. 165–178.

    Google Scholar 

  21. Baklagina, Yu.G., Khripunov, A.K., Tkachenko, A.A., Suvorova, E.I., Klechkovskaya, V.V., Borovikova, L.N., Smyslov, R.Yu., Nilova, V.K., Nazarkina, Ya.I., Lavrent’ev, V.K., Valueva, S.V., Kipper, A.I., and Kopeikin, V.V., Interaction of Se0 Nanoparticles Stabilized by Poly(vinylpyrrolidone) with Gel Films of Cellulose Acetobacter xylinum, Kristallografiya, 2006, vol. 51, no. 4, pp. 659–666 [Crystallogr. Rep. (Engl. transl.), 2006, vol. 51, no. 4, pp. 619–626].

    ADS  Google Scholar 

  22. Termo-, zharostoikie i negoryuchie volokna (Thermostable, Heat-Resistant, and Incombustible Fibers), Konkin, A.A., Ed., Moscow: Khimiya, 1978 [in Russian].

    Google Scholar 

  23. Crystallographica Search-Match (PDF 87-1582: Ca 2.6 Mg 0.4 (PO 4 ) 2 , PDF 74-566: Ca 5 (PO 4 ) 3 (OH)), Oxford: Oxford Cryosystems, 2005.

  24. Bigi, A., Falini, G., Foresti, E., Ripamonti, A., Gazzano, M., and Roveri, N., Rietveld Structure Refinement of Synthetic Magnesium Substituted beta-Tricalcium Phosphate, Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem., 1966, vol. 211, no. 1, pp. 13–16.

    Google Scholar 

  25. Elliot, J.C., Mackie, P.E., and Young, R.A., Monoclinic Hydroxyapatite, Science (Washington), 1973, vol. 180, pp. 1055–1057.

    Article  ADS  Google Scholar 

  26. Hatakeyama, H., Hatakeyama, T., and Nakamura, K., Relationship between Hydrogen Bonding and Water in Cellulose, J. Appl. Polym. Sci.: Appl. Polym. Symp., 1983, no. 37, pp. 979–991.

  27. Brown R.M., Jr., The Biosynthesis of Cellulose, J. Macromol. Sci., Pure Appl. Chem., 1996, vol. A33, no. 10, pp. 1345–1373.

    CAS  Google Scholar 

  28. Khripunov, A.K., Sinyaev, V.A., Baklagina, Yu.G., Smyslov, R.Yu., Tkachenko, A.A., Paramonov, B.A., Sazanov, Yu.N., and Shustikova, E.S., Composites Based on Cellulose and Amorphous Calcium Phosphates as Materials Promising for Medicine, in Sbornik tezisov dokladov Vserossiiskogo soveshchaniya “Biokeramika v meditsine” (Abstracts of Papers of the All-Russian Workshop “Bioceramics in Medicine,” Moscow, Russia, November 21–22, 2006), Moscow, 2006, pp. 55–56.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Romanov.

Additional information

Original Russian Text © D.P. Romanov, Yu.G. Baklagina, G.N. Gubanova, V.L. Ugolkov, V.K. Lavrent’ev, A.A. Tkachenko, V.A. Sinyaev, T.E. Sukhanova, A.K. Khripunov, 2010, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanov, D.P., Baklagina, Y.G., Gubanova, G.N. et al. Formation of organic-inorganic composite materials based on cellulose Acetobacter xylinum and calcium phosphates for medical applications. Glass Phys Chem 36, 484–493 (2010). https://doi.org/10.1134/S1087659610040139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659610040139

Key words

Navigation