Skip to main content
Log in

Investigation of sol-gel derived nanomaterials with a hierarchical structure

  • Proceedings of the First All-Russian Conference “Sol-Gel Synthesis and Study of Inorganic Compounds, Hybrid Functional Materials, and Disperse Systems” (St. Petersburg, Russia, November 22–24, 2010)
  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The basic processes of self-assembly in sol-gel technologies during the formation of network nanomaterials with a hierarchical structure have been considered. The gas-sensitive fractal structures have been prepared in systems based on dioxides of tin and silicon. The formation of a structure of nanocomposites has been studied using atomic force microscopy and electron microscopy methods. The gas-sensitive properties of nanomaterials have been investigated. A method for diagnosing objects with a hierarchical structure based on metal oxides has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brinker, C.J. and Scherer, G.W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, San Diego: Academic, 1990.

    Google Scholar 

  2. Semichenko, G.D., Zol’-gel’ protsess v keramicheskoi tekhnologii (Sol-Gel Process in the Ceramic Technology), Kharkov: National Technical University “Kharkiv Polytechnical Institute”, 1997 [in Russian].

    Google Scholar 

  3. Handbook of Sol-Gel Science and Technology: Processing, Characterization, and Applications, Sakka, S., Ed., New York: Springer, 2004, vols. 1–3.

    Google Scholar 

  4. Corriu, R. and Nguyên, T.A., Molecular Chemistry of Sol-Gel Derived Nanomaterials, Chichester (West Sussex, United Kingdom): John Wiley and Sons, 2009.

    Book  Google Scholar 

  5. Maksimov, A.I., Moshnikov, V.A., Tairov, Yu.M., and Shilova, O.A., Osnovy zol’-gel’ tekhnologii nanokompozitov. 2-e izd. (Fundamentals of the Sol-Gel Technology of Nanocomposites), St. Petersburg: “Elmor,” OOO “Tekhnomedia,” 2008, 2nd ed. [in Russian].

    Google Scholar 

  6. Schaefer, D.W. and Keefer, K.D., Fractal Geometry of Silica Condensation Polymers, Phys. Rev. Lett., 1984, vol. 53, no. 14, pp. 1383–1386.

    Article  CAS  Google Scholar 

  7. Schaefer, D.W. and Keefer, K.D., Structure of Random Porous Materials: Silica Aerogel, Phys. Rev. Lett., 1986, vol. 56, no. 20, pp. 2199–2202.

    Article  CAS  Google Scholar 

  8. Roldugin, V.I., Properties of Fractal Disperse Systems, Usp. Khim., 2003, vol. 72, no. 11, pp. 1027–1054.

    Google Scholar 

  9. Roldugin, V.I., Self-Organization of Nanoparticles at Interfacial Surfaces, Usp. Khim., 2004, vol. 73, no. 2, pp. 123–156.

    Google Scholar 

  10. Shilova, O.A. and Shilov, V.V., Nanocomposite Oxide and Hybrid Organic-Inorganic Materials Prepared by the Sol-Gel Methods: Synthesis, Properties, and Applications, in Nanosistemy. Nanomaterialy. Nanotekhnologii (Nanosystems, Nanomaterials, and Nanotechnologies), Shpak, A.P., Ed., Kiev: Akademperiodika, 2003, vol. 1, no. 1, pp. 9–83 [in Russian].

    Google Scholar 

  11. Shpak, A.P., Shilov, V.V., Shilova, O.A., and Kunitskii, Yu.A., Diagnostika nanosistem. Mnogourovnevye fraktal’nye nanostruktury (Diagnostics of Nanosystems: Multilevel Fractal Nanostructures), Kiev: Akademperiodika, 2004, part II [in Russian].

    Google Scholar 

  12. Tsvetkova, I.N., Shilova, O.A., Gomza, Yu.P., and Sukhoy, K.M., Sol-Gel Synthesis and Investigation of Silicophosphate and Proton-Conducting Hybrid Materials, Alternativnaya Energetika i Ekologiya, 2007, vol. 45, no. 1, pp. 139–140.

    Google Scholar 

  13. Tsvetkova, I.N., Shilova, O.A., Voronkov, M.G., Gomza, Yu.P., and Sukhoy, K.M., Sol-Gel Synthesis and Investigation of Proton-Conducting Hybrid Organic-Inorganic Silicophosphate Materials, Glass Phys. Chem., 2008, vol. 34, no. 1, pp. 68–76.

    Article  CAS  Google Scholar 

  14. Talanov, V.M., Ereiskaya, G.P., and Yuzyuk, Yu.I., Vvedenie v khimiyu i fiziku nanostruktur i nanostrukturirovannykh materialov. Uchebnoe posobie (Introduction to the Chemistry and Physics of Nanostructures and Nanostructured Materials: A Textbook), Moscow: The Russian Academy of Natural History, 2008 [in Russian].

    Google Scholar 

  15. Sanchez, C., Lebeau, B., Ribot, F.., and In, M., Molecular Design of Sol-Gel Derived Hybrid Organic-Inorganic Nanocomposites, J. Sol-Gel Sci. Technol., 2000, vol. 19, nos. 1–3, pp. 31–38.

    Article  CAS  Google Scholar 

  16. Shchipunov, Yu.A., Karpenko, T.Yu., and Krekoten, A.V., Hybrid Organic-Inorganic Nanocomposites Fabricated with a Novel Biocompatible Precursor Using Sol-Gel Processing, Compos. Interfaces, 2005, vol. 11, nos. 8–9, pp. 587–607.

    Article  CAS  Google Scholar 

  17. Rubinstein, M. and Colby, R.H., Polymer Physics, New York: Oxford University Press, 2003.

    Google Scholar 

  18. Ozin, G.A., Hou, K., Lotsch, B.V., Cademartiri, L., Puzzo, D.P., Scotognella, F., Ghadimi, A., and Thomson, J., Nanofabrication by Self-Assembly, Mater. Today, 2009, vol. 12, no. 5, pp. 12–23.

    Article  CAS  Google Scholar 

  19. Pozharskii, A.F., Supramolecular Chemistry: Part II. Self-Organizing Molecules, Soros. Obraz. Zh., 1997, no. 9, pp. 40–47.

  20. Mostepanenko, V.M. and Trunov, N.N., Casimir Effect and Its Applications, Usp. Fiz. Nauk, 1988, vol. 156, no. 3, pp. 385–426.

    Article  Google Scholar 

  21. Munday, J.N. and Capasso, F., Precision Measurement of the Casimir-Lifshitz Force in a Fluid, Phys. Rev. A: At., Mol., Opt. Phys., 2007, vol. 75, p. 060102(R).

    Google Scholar 

  22. Mackay, A.L., A Dense Non-Crystallographic Packing of Equal Spheres, Acta Crystallogr., 1962, vol. 15, pp. 916–918.

    Article  CAS  Google Scholar 

  23. Shevchenko, V.Ya., Madison, A.E., and Shudegov, V.E., The Structural Diversity of the Nanoworld, Glass Phys. Chem., 2003, vol. 29, no. 6, pp. 577–582.

    Article  CAS  Google Scholar 

  24. Shevchenko, V.Ya., Samoilovich, M.I., Talis, A.L., and Madison, A.E., Nanostructures with Coherent Boundaries and the Local Approach, Glass Phys. Chem., 2004, vol. 30, no. 6, pp. 537–550.

    Article  CAS  Google Scholar 

  25. Shevchenko, V.Ya., Samoilovich, M.I., Talis, A.L., and Madison, A.E., Structure of Icosahedral Nanoobjects, Glass Phys. Chem., 2005, vol. 31, no. 6, pp. 823–828.

    Article  CAS  Google Scholar 

  26. Shevchenko, V.Ya., Madison, A.E., and Mackay, A.L., Coherent Coexistence of Nanodiamonds and Carbon Onions in Icosahedral Core-Shell Particles, Acta Crystallogr., Sect. A: Found. Crystallogr., 2007, vol. 63, pp. 172–176.

    Article  Google Scholar 

  27. Shevchenko, V.Ya., Madison, A.E., and Mackay, A.L., A Generalized Model for the Shell Structure of Icosahedral Viruses, Struct. Chem., 2007, vol. 18, no. 3, pp. 343–346.

    Article  CAS  Google Scholar 

  28. Moshnikov, V.A., Gracheva, I.E., Kuznezov, V.V., Maximov, A.I., Karpova, S.S., and Ponomareva, A.A., Hierarchical Nanostructured Semiconductor Porous Materials for Gas Sensors, J. Non-Cryst. Solids, 2010, vol. 356, nos. 37–40, pp. 2020–2025.

    Article  CAS  Google Scholar 

  29. Gracheva, I.E., Maksimov, A.I., and Moshnikov, V.A., Analysis of Structural Features of Tin Dioxide-Based Fractal Nanocomposites by Atomic-Force Microscopy and X-Ray Diffraction, J. Surf. Invest., 2009, vol. 3, no. 5, pp. 761–768.

    Article  Google Scholar 

  30. Julien, R., Fractal Aggregates, Usp. Fiz. Nauk, 1989, vol. 157, no. 2, pp. 339–357.

    Article  Google Scholar 

  31. Shabanova, N.A. and Sarkisov, P.D., Osnovy zol’-gel’ tekhnologii nanodispersnogo kremnezema (Fundamentals of the Sol-Gel Technology of Nanodispersed Silica), Moscow: IKTs Akademkniga, 2004 [in Russian].

    Google Scholar 

  32. Shilov, V.V., Shilova, O.A., and Gomza, Yu.P., Modern Concepts of the Fractal Structure of Nanocomposites Prepared by the Sol-Gel Method, in Khimicheskie nanotekhnologii i funktsional’nye nanomaterialy (Chemical Nanotechnologies and Functional Materials), St. Petersburg: RESTEK, 2003, pp. 18–20 [in Russian].

    Google Scholar 

  33. Huggins, M., J. Phys. Chem., 1942, vol. 46, p. 151.

    Article  CAS  Google Scholar 

  34. Flory, P.J., Principles of Polymer Chemistry, New York: Cornell University Press, 1971.

    Google Scholar 

  35. Grosberg, A.Yu. and Khokhlova, A. R., Statisticheskaya fizika makromolekul: Uchebnoe rukovodstvo (Statistical Physics of Macromolecules: A Guidebook), Moscow: Nauka, 1989 [in Russian].

    Google Scholar 

  36. Rozenberg, B.A., Microphase Separation in Curing Multicomponent Polymer-Oligomer Systems, Ross. Khim. Zh., 2001, vol. 45, nos. 5–6, pp. 23–31.

    CAS  Google Scholar 

  37. Bystrova, A.V., Parshina, E.V., Tatarinova, E.A., Buzin, M.I., Ozerina, P.A., Ozerin, A.N., and Muzafarov, A.M., Carbosilane Dendrimers with the Outer Functional Layer as the Basis for Synthesis of Nanoporous Methylsilsesquioxane Films, Ross. Nanotekhnol., 2007, vol. 2, no. 1–2, pp. 83–89.

    Google Scholar 

  38. Matsuda, A., Matsuno, Y., Tatsumisago, M., and Minami, T., Fine Patterning and Characterization of Gel Films Derived from Methyltriethoxysilane and Tetraethoxysilane, J. Am. Ceram. Soc., 1998, vol. 81, no. 11, pp. 2849–2852.

    Article  CAS  Google Scholar 

  39. Haruvy, Y., Ryabov, Y., Arkhipov, V., Gutina, A., Axelrod, E., and Feldman, Y., Fast-Sol-Gel Derived Silsesquioxane Glasses Embodying Glycerol Moieties: Dielectric Properties and Morphology, J. Non-Cryst. Solids, 2002, vol. 305, nos. 1–3, pp. 226–234.

    Article  CAS  Google Scholar 

  40. Gracheva, I.E. and Moshnikov, V.A., Disturbing Electrical Action with an Alternating Frequency as a Novel Perspective for Increase of the Sensitivity and Selectivity in Systems of the “Electronic Nose” Type, Izv. Ross. Gos. Pedagog. Univ. im. A.I. Gertsena: Estestv. Tochn. Nauki, Fiz., 2009, no. 11 (79), pp. 100–107.

  41. Myasnikov, I.A., Sukharev, V.Ya., Kupriyanov, L.Yu., and Zav’yalov, S.A., Poluprovodnikovye sensory v fizikokhimicheskikh issledovaniyakh (Semiconductor Sensors in Physicochemical Investigations), Moscow: Nauka, 1991 [in Russian].

    Google Scholar 

  42. Moshnikov, V.A. and Gracheva, I.E., Gas-Sensitive Network Nanocomposites Based on Dioxides of Tin and Silicon, in Prilozhenie k zhurnalu “Vestnik RGRTU” (Supplement to the Journal “Bulletin of the Ryazan State Radio Engineering University”), Ryazan, 2009, issue 4, pp. 92–98 [in Russian].

  43. Nakanishi, K., Sol-Gel Process of Oxides Accompanied by Phase Separation, Bull. Chem. Soc. Jpn., 2006, vol. 79, no. 5, pp. 673–691.

    Article  CAS  Google Scholar 

  44. Gracheva, I.E., Maksimov, A.I., Moshnikov, V.A., and Plekh, M.E., A Computer-Aided Setup for Gas-Sensing Measurements of Sensors Based on Semiconductor Nanocomposites, Instrum. Exp. Tech., 2008, vol. 51, no. 3, pp. 462–465.

    Article  CAS  Google Scholar 

  45. Orazem, M.E. and Tribollet, B., Electrochemical Impedance Spectroscopy: The Electrochemical Society Series, New York: Wiley Interscience, 2008.

    Book  Google Scholar 

  46. Barsoukov, E. and Macdonald, J.R., Impedance Spectroscopy: Theory, Experiment, and Applications, New York: Willey Interscience, 2005, 2nd ed.

    Book  Google Scholar 

  47. Tomaev, V.V., Moshnikov, V.A., Miroshkin, V.P., Gar’kin, L.N., and Zhivago, A.Yu., Impedance Spectroscopy of Metal-Oxide Nanocomposites, Glass Phys. Chem., 2004, vol. 30, no. 5, pp. 461–470.

    Article  CAS  Google Scholar 

  48. Gracheva, I.E. and Moshnikov, V.A., Analysis of the Processes on the Surface of Gas-Sensitive Nanostructures by Admittance Spectroscopy, Izv. Gos. Elektrotekh. Univ., Ser. Fiz. Solid State i Elektroniks, 2008, issue 6, pp. 19–24.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Gracheva.

Additional information

Original Russian Text © V.A. Moshnikov, I.E. Gracheva, M.G. An’chkov, 2011, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moshnikov, V.A., Gracheva, I.E. & An’chkov, M.G. Investigation of sol-gel derived nanomaterials with a hierarchical structure. Glass Phys Chem 37, 485–495 (2011). https://doi.org/10.1134/S1087659611050063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659611050063

Keywords

Navigation