Skip to main content
Log in

Synthesis and study of the biologically active lysozyme–silver nanoparticles–montmorillonite K10 complexes

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Bioinorganic complexes based on silver nanoparticles coated with lysozyme shell (bioconjugates) and aluminosilicate matrices have been synthesizeed. Layered aluminosilicates with the structure of montmorillonite of grade K10 were used as matrices. Complexes with the silver mass fraction 0.3% (from the chemical analysis data) were obtained through fivefold treatment of the aluminosilicate matrix by a sol of bioconjugates with an average particle size of 18 nm and a thickness of the biological cell of ∼4 nm. The produced biocomplexes were investigated by the methods of X-ray diffraction, scanning electron microscopy, and UV spectroscopy. The samples’ antibacterial activity against Gram-negative (E. coli ML-35p, P. aeruginosa ATCC 27853) and Gram-positive (MRSA ATCC 33591, L. monocytogenes EGD) bacteria has been studied. The presence of the biocomplex activity toward antibiotic-resistant strains E. coli ML-35p and MRSA has been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Efimenkova, O., Antibiotics: The life goes on, Nauka i Zhizn’, 2006, no. 8, pp. 48–55.

    Google Scholar 

  2. Fessler, A., Scott, C., Kadlec, K., Ehricht, R., Monecke, S., and Schwarz, S., Characterization of methicillin-resistant Staphylococcus aureus ST398 from cases of bovine mastitis, J. Antimicrob. Chemother., 2010, vol. 65, no. 4, p. 619–625.

    Article  Google Scholar 

  3. Köck, R., Becker, K., Cookson, B., van GemertPijnen, J.E., Harbarth, S., Kluytmans, J., Mielke, M., Peters, G., Skov, R.L., Struelens, M.J., Tacconelli, E., Navarro Torné, A., Witte, W., and Friedrich, A.W., Methicillin-resistant Staphylococcus aureus (MRSA): Burden of disease and control challenges in Europe, Euro Surveill., 2010, vol. 15, no. 41, p. 19688.

    Google Scholar 

  4. Krutyakov, Yu.A., Kudrinskiy, A.A., Olenin, A.Yu., and Lisichkin, G.V., Synthesis and properties of silver nanoparticles: Advances and prospects, Russ. Chem. Rev., 2008, vol. 77, no. 3, pp. 233–257.

    Article  Google Scholar 

  5. Golubeva, O.Yu., Shamova, O.V., Orlov, D.S., Pazina, T.V., Boldina, A.S., Drozdova, I.A., and Kokryakov, V.N., Synthesis and study of antimicrobial activity of bioconjugates of silver nanoparticles and endogenous antibiotics, Glass Phys. Chem., 2011, vol. 37, no. 1, pp. 78–84.

    Article  Google Scholar 

  6. Zhu, H. and Njuguna, J., Nanolayered silicates/clay minerals: Uses and effects on health, in Health and Environmental Safety of Nanomaterials: Polymer Nanocomposites and Other Materials Containing Nanoparticles, Njuguna, J., Pielichowski, K., and Zhu, H., Eds., Cambridge, United Kingdom: Woodhead, 2014, pp. 133–146.

    Chapter  Google Scholar 

  7. Varadwaj, G.B.B. and Parida, K.M., Montmorillonite supported metal nanoparticles: An update on syntheses and applications, RSC Adv., 2013, vol. 33, no. 3, pp. 13583–13593.

    Article  Google Scholar 

  8. Carretero, M.I., Gomes, C.S.F., and Tateo, F., Clays, drugs, and human health, in Handbook of Clay Science: Developments in Clay Science Series, Bergaya, F. and Lagaly, G., Eds., Amsterdam, The Netherlands: Elsevier, 2013, chap. 5.5, vol. 5, pp. 711–764.

    Article  Google Scholar 

  9. Kiersnowski, A., Serwadczak, M., Kuaga, E., Futoma-Kooch, B., Bugla-Poskoska, G., Kwiatkowski, R., and Doroszkiewicz, W., Delamination of montmorillonite in serum—A new approach to obtaining clay-based biofunctional hybrid materials, Appl. Clay Sci., 2009, vols. 3–4, no. 44, pp. 225–229.

    Article  Google Scholar 

  10. Kabiri, K., Mirzadeh, H., and Zohuriaan-Mehr, M.J., Chitosan modified MMT-poly(AMPS) nanocomposite hydrogel: Heating effect on swelling and rheological behavior, J. Appl. Polym. Sci., 2010, vol. 5, no. 116, pp. 2548–2556.

    Google Scholar 

  11. Johnston, C.T., Premachandra, G.S., and Szabo, T., Interaction of biological molecules with clay minerals: A combined spectroscopic and sorption study of lysozyme on saponite, Langmuir, 2014, vol. 28, no. 1, pp. 0743–7463.

    Google Scholar 

  12. Zhu, L., Letaief, S., Liu, Y., Gervais, F., and Detellier, C., Clay mineral-supported gold nanoparticles, Appl. Clay Sci., 2009, vols. 3–4, no. 43, pp. 439–446.

    Article  Google Scholar 

  13. Golubeva, O.Yu. and Gusarov, V.V., Layered silicates with a montmorillonite structure: Preparation and prospects for the use in polymer nanocomposites, Glass Phys. Chem., 2007, vol. 33, no. 3, pp. 237–241.

    Article  Google Scholar 

  14. Lavorgna, M., Attianese, I., Buonocore, G.G., Conte, A., Del Nobile, M.A., Tescione, F., and Amendola, E., MMT-supported Ag nanoparticles for chitosan nanocomposites: Structural properties and antibacterial activity, Carbohydr. Polym., 2014, vol. 102, no. 1, pp. 385–392.

    Article  Google Scholar 

  15. An, J., Ji, Z., Wang, D., Luo, Q., and Li, X., Preparation and characterization of uniform-sized chitosan/silver microspheres with antibacterial activities, Mater. Sci. Eng., C, 2014, vol. 1, no. 36, pp. 33–41.

    Article  Google Scholar 

  16. Tossi, A., Scocchi, M., Zanetti, M., Gennaro, R., Storici, P., and Romeo, D., An approach combining rapid cDNA amplification and chemical synthesis for the identification of novel, cathelicidin-derived, antimicrobial peptides, in Methods in Molecular Biology: Volume 78. Antibacterial Peptide Protocols, Shafer, W.M., Ed., Totowa, New Jersey, United States: Humana, 1997, pp. 133–150.

    Chapter  Google Scholar 

  17. Jiang, J.-Q. and Zeng, Z., Comparison of modified montmorillonite adsorbents: Part II. The effects of the type of raw clays and modification conditions on the adsorption performance, Chemosphere, 2003, vol. 1, no. 53, pp. 53–62.

    Article  Google Scholar 

  18. Panuszko, A., Wojciechowski, M., Brudziak, P., Rakowska, P.W., and Stangret, J., Characteristics of hydration water around hen egg lysozyme as the protein model in aqueous solution. FTIR spectroscopy and molecular dynamics simulation, Phys. Chem. Chem. Phys., 2012, vol. 14, no. 45, pp. 15765–15773.

    Article  Google Scholar 

  19. Drummy, L.F., Jones, S.E., Pandey, R.B., Farmer, B.L., Vaia, R.A., and Naik, R.R., Bioassembled layered silicate–metal nanoparticle hybrids, ACS Appl. Mater. Interfaces, 2010, vol. 2, no. 5, pp. 1492–1498.

    Article  Google Scholar 

  20. Platon, N., Rosu, A.-M., Arus, V.A., Nistor, D.I., and Siminiceanu, I., Chemically modified clays used for environmental quality, J. Eng. Stud. Res., 2013, vol. 19, no. 4, pp. 52–58.

    Google Scholar 

  21. Ibarguren, C., Naranjo, P.M., Stötzel, C., Audisio, M.C., Sham, E.L., Farfán Torres, E.M., and Müller, F.A., Adsorption of nisin on raw montmorillonite, Appl. Clay Sci., 2014, vol. 90, no. 1, pp. 88–95.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Golubeva.

Additional information

Original Russian Text © O.Yu. Golubeva, O.V. Shamova, A.V. Yakovlev, M.S. Zharkova, 2016, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubeva, O.Y., Shamova, O.V., Yakovlev, A.V. et al. Synthesis and study of the biologically active lysozyme–silver nanoparticles–montmorillonite K10 complexes. Glass Phys Chem 42, 87–94 (2016). https://doi.org/10.1134/S1087659616010041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659616010041

Keywords

Navigation