Skip to main content
Log in

Study on the stability of hybrid dispersions of cellulose nanocrystals and aluminum oxide

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Hybrid dispersion systems based on cellulose nanocrystals (CNC) and aluminum oxide have been prepared, and the influence of the ζ-potential on their stability has been studied for a wide range of the concentration ratio of the components. Their influence on the morphology and properties of the hybrid particles is evaluated. It is established that one can obtain stable colloidal dispersions with both negatively and positively charged particles or hybrid systems with a neutralized surface charge by controlling the surface potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pomogailo, A.D. and Dzhardimalieva, G.I., Nanostructured Materials Preparation via Condensation Ways, Amsterdam: Springer, 2014.

    Book  Google Scholar 

  2. Shchipunov, Y.A. and Karpenko, T.Y., Hybrid polysaccharide–silica nanocomposites prepared by the sol–gel technique, Langmuir, 2004, vol. 20, no. 10, pp. 3882–3887.

    Article  Google Scholar 

  3. Sevostyanov, M.A., Fedotov, A.Yu., Kolmakov, A.G., Zabolotnyi, V.T., Barinov, S.M., Goncharenko, B.A., Komlev, V.S., Baikin, A.S., Sergienko, K.V., Teterina, A.Yu., Nasakina, E.O., Leonova, Yu.O., and Leonov, A.V., Mechanical properties of nanostructured nitinol/chitosan composite material, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 4, pp. 344–346.

    Article  Google Scholar 

  4. Kononova, S.V., Korytkova, E.N., Maslennikova, T.P., Romashkova, K.A., Kruchinina, E.V., Potokin, I.L., and Gusarov, V.V., Polymer-inorganic nanocomposites based on aromatic polyamidoimides effective in the processes of liquids separation, Russ. J. Gen. Chem., 2010, vol. 80, no. 6, pp. 1136–1142.

    Article  Google Scholar 

  5. Zhou, Z., Lu, C., Wu, X., and Zhang, X., Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts: Facile synthesis and their application to 4-nitrophenol reduction, RSC Adv., 2013, vol. 3, no. 48, pp. 26066–26073.

    Article  Google Scholar 

  6. Lin, N. and Dufresne, A., Nanocellulose in biomedicine: Current status and future prospect, Eur. Polym. J., 2014, vol. 59, pp. 302–325.

    Article  Google Scholar 

  7. Romanov, D.P., Baklagina, Yu.G., Gubanova, G.N., Ugolkov, V.L., Lavrent’ev, V.K., Tkachenko, A.A., Sinyaev, V.A., Sukhanova, T.E., and Khripunov, A.K., Formation of organic-inorganic composite materials based on cellulose Acetobacter xylinum and calcium phosphates for medical applications, Glass Phys. Chem., 2010, vol. 36, no. 4, pp. 484–493.

    Article  Google Scholar 

  8. Salas, C., Nypelo, T., Rodriguez-Abreu, C., Carrillo, C., and Rojas, O.J., Nanocellulose properties and applications in colloids and interfaces, Curr. Opin. Colloid Interface Sci., 2014, vol. 19, no. 5, pp. 383–396.

    Article  Google Scholar 

  9. Wei, H., Rodriguez, K., Renneckar, S., and Vikesland, P.J., Environmental science and engineering applications of nanocellulose-based nanocomposites, Environ. Sci.: Nano, 2014, vol. 1, no. 4, pp. 302–316.

    Google Scholar 

  10. Han, J., Zhou, C., Wu, Y., Liu, F., and Wu, Q., Selfassembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge, Biomacromolecules, 2013, vol. 14, no. 5, pp. 1529–1540.

    Article  Google Scholar 

  11. Liu, S., Tao, D., Bai, H., and Liu, X., Cellulosenanowhisker-templated synthesis of titanium dioxide/cellulose nanomaterials with promising photocatalytic abilities, J. Appl. Polym. Sci., 2012, vol. 126, no. 1 (Suppl.), pp. E282–E290.

    Article  Google Scholar 

  12. Fu, G., He, A., Jin, Y., Cheng, Q., and Song, J., Fabrication of hollow silica nanorods using nanocrystalline cellulose as templates, BioResources, 2012, vol. 7, no. 2, pp. 2319–2329.

    Article  Google Scholar 

  13. Mautner, A., Lee, K.Y., Tammelin, T., Mathew, A.P., Nedoma, A.J., Li, K., and Bismarck, A., Cellulose nanopapers as tight aqueous ultra-filtration membranes, React. Funct. Polym., 2015, vol. 86, pp. 209–214.

    Article  Google Scholar 

  14. Sitnikov, P.A., Belykh, A.G., Fedoseev, M.S., Vaseneva, I.N., and Kuchin, A.V., Modification of epoxyanhydride polymers with aluminum oxide, Russ. J. Appl. Chem., 2008, vol. 81, no. 5, pp. 826–829.

    Article  Google Scholar 

  15. De Salvi, D.T., Barud, H.S., Caiut, J.M.A., Messaddeq, Y., and Ribeiro, S.J., Self-supported bacterial cellulose/ boehmite organic-inorganic hybrid films, J. Sol–Gel Sci. Technol., 2012, vol. 63, no. 2, pp. 211–218.

    Article  Google Scholar 

  16. Fraschini, C. and Chauve, G., Le Berre, J.F., Ellis, S., Methot, M., O’Connor, B., and Bouchard, J., Critical discussion of light scattering and microscopy techniques for CNC particle sizing, Nord. Pulp Pap. Res. J., 2014, vol. 29, no. 1, pp. 31–40.

    Article  Google Scholar 

  17. Alves, L., Medronho, B., Antunes, F.E., Fernández-García, M.P., Ventura, J., Araújo, J.P., Romano, A., and Lindmand, B., Unusual extraction and characterization of nanocrystalline cellulose from cellulose derivatives, J. Mol. Liq., 2015, vol. 210, pp. 106–112.

    Article  Google Scholar 

  18. Yoldas, B.E., Alumina sol preparation from alkoxides, Am. Ceram. Soc. Bull., 1987, vol. 54, pp. 289–290.

    Google Scholar 

  19. Hogg, R., Healy, T.W., and Furstenau, D.W., Trans. Faraday Soc., 1966, vol. 62, pp. 1638–1651.

    Article  Google Scholar 

  20. Golikova, E.V., Burdina, N.M., and Vysokovskaya, N.A., Aggregation stability of SiO2, FeOOH, ZrO2, CeO2, and natural diamond sols and their binary mixtures: 2. The photometric study of heterocoagulation of SiO2–FeOOH, SiO2–ZrO2, SiO2–CeO2, and CeO2–natural diamond binary systems in KCl solutions, Colloid J., 2002, vol. 64, no. 2, pp. 142–148.

    Article  Google Scholar 

  21. Particle Deposition and Aggregation Measurement, Modelling and Simulation, Elimelech, M., Gregory, J., Jia, X., and Williams, R.A., Eds., Heinemann: Elsevier, 1995.

  22. Lu, S., Pugh, R.J., and Forssberg, E., Interfacial Separation of Particles, Studies in Interface Science, Amsterdam: Elsevier, 2005, vol.20.

  23. Baturenko, D.Yu., Chernoberezhskii, Yu.M., Lorentsson, A.V., and Zhukov, A.N., Effect of pH on the aggregation stability of microcrystalline cellulose dispersions in aqueous 0.1 M NaCl solutions, Colloid J., 2003, vol. 65, no. 6, pp. 666–671.

    Article  Google Scholar 

  24. Krivoshapkin, P.V., Krivoshapkina, E.F., and Dudkin, B.N., Evaluation of surface forces and structure formation in water-organic dispersed systems of aluminum oxide, Glass Phys. Chem., 2012, vol. 38, no. 5, pp. 449–454.

    Article  Google Scholar 

  25. Golikova, E.V., Molodkina, L.M., Zagorskaya, L.L., and Garibin, E.A., Short-range and long-range aggregation of particles in the γ-Al2O3 sol: II. Photometric and ultramicroscopic investigation of the aggregate stability of the positively charged γ-Al2O3 sol, Glass Phys. Chem., 2010, vol. 36, no. 5, pp. 598–608.

    Article  Google Scholar 

  26. Cerbelaud, M., Videcoq, A., Abelard, P., Pagnoux, C., Rossignol, F., and Ferrando, R., Heteroaggregation between Al2O3 Submicrometer Particles and SiO2 nanoparticles: experiment and simulation, Langmuir, 2008, vol. 24, pp. 3001–3008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Martakov.

Additional information

Original Russian Text © I.S. Martakov, P.V. Krivoshapkin, M.A. Torlopov, V.I. Mikhailov, E.F. Krivoshapkina, 2016, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martakov, I.S., Krivoshapkin, P.V., Torlopov, M.A. et al. Study on the stability of hybrid dispersions of cellulose nanocrystals and aluminum oxide. Glass Phys Chem 42, 590–596 (2016). https://doi.org/10.1134/S1087659616060122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659616060122

Keywords

Navigation