Skip to main content
Log in

Influence of the electrokinetic properties of cellulose on the morphology of iron(III) oxide upon template synthesis

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Microsized tubes and fibers of iron(III) oxide are obtained by the sol-gel method using cotton cellulose as template. The influence of the electrokinetic properties of the surface of cotton cellulose and sols of nanoparticles, as well as the calcination temperature on morphology and the properties of ceramic fibers, is studied. It is noted that the use of sol with a strongly acidic dispersion medium leads to the formation of microtubes, fully repeating the features of the structure of the original cellulose fiber. The mechanism of the formation of fibers and tubes based on electrostatic interactions is proposed. With an increase of the calcination temperature from 600 to 1200°C, there is an increase in the size of the α-Fe2O3 particles, a reduction of the inner diameter of the tubes, and an increase of their mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grashchenkov, D.V., Balinova, Yu.A., and Tinyakova, E.V., Aluminum oxide ceramic fibers and materials based on them, Glass Ceram., 2012, vol. 69, no. 3, pp. 130–133.

    Article  Google Scholar 

  2. Umnov, P.P., Kurakova, N.V., Molokanov, V.V., Sevost’yanov, M.A., Kolmakov, A.G., and Kovneristyi, Yu.K., Effect of processing factors on the quality of the surface of a composite wire coated with amorphous metal, Deform. Razrushenie Mater., 2006, no. 12, pp. 38–42.

    Google Scholar 

  3. Martakov, I.S., Krivoshapkin, P.V., Torlopov, M.A., and Krivoshapkina, E.F., Application of chemically modified celluloses as templates for obtaining of alumina materials, Fibers Polym., 2015, vol. 16, no. 5, pp. 975–981.

    Article  Google Scholar 

  4. Cheng, Y., Zou, B., Wang, C., Liu, Y., Fan, X., Zhu, L., Wang, Y., Ma, H., and Cao, X., Formation mechanism of Fe2O3 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic, electrochemical properties, Cryst. Eng. Commun., 2011, vol. 13, no. 8, pp. 2863–2870.

    Article  Google Scholar 

  5. Maslennikova, T.P., Korytkova, E.N., Drozdova, I.A., and Gusarov, V.V., Interaction of potassium chloride aqueous solution Mg3Si2O5(OH)4 with the nanotubes based on magnesium hydrosilicate, Russ. J. Appl. Chem., 2009, vol. 82, no. 3, p. 352–355.

    Article  Google Scholar 

  6. Perez, J.M., Iron oxide nanoparticles: Hidden talent, Nat. Nanotechnol., 2007, vol. 2, pp. 535–536.

    Article  Google Scholar 

  7. Sitnikov, P.A., Kuchin, A.V., Ryazanov, M.A., Belykh, A.G., Vaseneva, I.N., Fedoseev, M.S., and Tereshatov, V.V., Influence of acid-base properties of oxides surface on their reactivity towards epoxy compounds, Russ. J. Gen. Chem., 2014, vol. 84, no. 5, pp. 810–815.

    Article  Google Scholar 

  8. Rajala, J.W., Shin, H.U., Lolla, D., and Chase, G.G., Core-shell electrospun hollow aluminum oxide ceramic fibers, Fibers, 2015, vol. 3, pp. 450–462.

    Article  Google Scholar 

  9. Ermolenko, I.N, Ul’yanova, T.M., Vityaz’, P.A., and Fedorova, I.L., Voloknistye vysokotemperaturnye materialy (Fibrous High-Temperature Materials), Minsk: Nauka i Tekhnika, 1991.

    Google Scholar 

  10. Yuan, R., Fu, X., Wang, X., Liu, P., Wu, L., Xu, Y., Wang, X., and Wang, Z., Template synthesis of hollow metal oxide fibers with hierarchical architecture, Chem. Mater., 2006, vol. 18, no. 19, pp. 4700–4705.

    Article  Google Scholar 

  11. Li, Q. and Zhang, C., Preparation of Fe2O3 microtubules and the effect of a surfactant on their properties, J. Ceram. Process. Res., 2010, vol. 11, no. 3, pp. 331–334.

    Google Scholar 

  12. Jirgensons, B. and Straumanis, M.E., A Short Textbook of Colloid Chemistry, New York: Macmillan, 1962.

    Google Scholar 

  13. Khamova, T.V., Shilova, O.A., and Golikova, E.V., Investigation of the structuring in the sol–gel systems based on tetraethoxysilane, Glass Phys. Chem., 2006, vol. 32, no. 4, pp. 448–459.

    Article  Google Scholar 

  14. Oshima, H.J., Healy, T.W., and White, L.R., Improvement on Hogg–Healy–Fuerstenau formulas for the interaction on dissimilar double layers, Thin Solid Films, 1982, vol. 89, no. 2, pp. 484–493.

    Google Scholar 

  15. Elimelech, M., Gregory, J., Jia, X., and Williams, R.A., Particle Deposition and Aggregation Measurement, Modelling and Simulation, Amsterdam: Elsevier, 1995.

    Google Scholar 

  16. Lu, S., Pugh, R.J., and Forssberg, E., Interfacial Separation of Particles, Studies in Interface Science, Amsterdam: Elsevier, 2005, vol.20.

  17. Bergstrom, L., Stemme, S., Dahlfors, T., Arwin, H., and Odberg, L., Spectroscopic ellipsometry characterization and estimation of the Hamaker constant of cellulose, Cellulose, 1999, vol. 6, pp. 1–13.

    Article  Google Scholar 

  18. Krivoshapkin, P.V., Krivoshapkina, E.F., and Dudkin, B.N., Evaluation of surface forces and structure formation in water–organic dispersed systems of aluminum oxide, Glass Phys. Chem., 2012, vol. 38, no. 5, pp. 449–454.

    Article  Google Scholar 

  19. Liu, H.H., Lanphere, J., Walker, S., and Cohen, Y., Effect of hydration repulsion on nanoparticle agglomeration evaluated via a constant number Monte-Carlo simulation, Nanotecnology, 2015, vol. 26, no. 4, p. 045708. doi 10.1088/0957-4484/26/4/045708

    Article  Google Scholar 

  20. Israelachvili, J.N., Intermolecular and Surface Forces, New York: Academic, 1992.

    Google Scholar 

  21. Baturenko, D.Yu., Chernoberezhskii, Yu.M., Lorentsson, A.V., and Zhukov, A.N., Effect of pH on the aggregation stability of microcrystalline cellulose dispersions in aqueous 0.1 M NaCl solutions, Colloid J., 2003, vol. 65, no. 6, pp. 666–671.

    Article  Google Scholar 

  22. WWW-MINCRYST, Crystallographic and Crystallochemical Database for Minerals and their Structural Analogues. http://database.iem.ac.ru/mincryst.

  23. Nanoscience: Colloidal and Interfacial Aspects, Starov, V.M., Ed., Boca Raton: CRC Press, 2010.

  24. Cornell, R.M. and Schwertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses, Weinheim: Wiley, 2003.

    Book  Google Scholar 

  25. Kruk, M. and Jaroniec, M., Gas adsorption characterization of ordered organic–inorganic nanocomposite materials, Chem. Mater., 2001, vol. 13, no. 10, pp. 3169–3183.

    Article  Google Scholar 

  26. Smolin, A.S., Shabiev, R.O., and Yakkola, P., A study of the zeta potential and cationic need of semi-finished fiber products, Khim. Rastit. Syr’ya, 2009, no. 1, pp. 177–184.

    Google Scholar 

  27. Mosur, P.M., Chernoberezhskii, Yu.M., and Lorenstson, A.V., Electrosurface properties of microcrystalline cellulose dispersions in aqueous solutions of aluminum chloride, nitrate, and sulfate, Colloid J., 2008, vol. 70, no. 4, pp. 462–465.

    Article  Google Scholar 

  28. Herrington, T.M. and Midmore, B.R., Adsorption of ions at the cellulose/aqueous electrolyte interface. Part 1. Charge/pH isotherms, J. Chem. Soc., Faraday Trans., 1984, vol. 80, no. 6, pp. 1525–1537.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Mikhailov.

Additional information

Original Russian Text © V.I. Mikhailov, E.F. Krivoshapkina, Yu.I. Ryabkov, P.V. Krivoshapkin, 2016, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, V.I., Krivoshapkina, E.F., Ryabkov, Y.I. et al. Influence of the electrokinetic properties of cellulose on the morphology of iron(III) oxide upon template synthesis. Glass Phys Chem 42, 582–589 (2016). https://doi.org/10.1134/S1087659616060158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659616060158

Keywords

Navigation