Skip to main content
Log in

The electronic structure of alkali metal oxides

  • Structure of Chemical Compounds
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Crystalline phase total energies, band structures, the distributions of the total and partial densities of electron states, and atomic charges were calculated for lithium, sodium, and potassium oxides, peroxides, superoxides, and ozonides using the CRYSTAL 06 and GAMESS packages in the B3LYP parameterization. For the molecular phases, the geometry was optimized and molecular orbital energies calculated. The results obtained for metal oxides were compared with the experimental photoelectron spectroscopy data and used to analyze their formation and thermal decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. K. Vol’nov, Peroxide Compounds of Alkaline Metals (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  2. W. Hesse, M. Jansen, and W. Schnick, Progr. Solid State Chem. 19(1), 47 (1989).

    Article  CAS  Google Scholar 

  3. M. Jancen and H. Nuss, ZAACA 633, 1307 (2007).

    Google Scholar 

  4. H. Y. Wu, H. Zhang, X. L. Cheng, and L. C. Cai, Phys. Lett. 360, 352 (2006).

    Article  CAS  Google Scholar 

  5. Z. K. Nikitina and V. Ya. Rosolovskii, Zh. Neorg. Khim. 42, 1252 (1997) [Russ. J. Inorg. Chem. 42, 1130 (1997)].

    CAS  Google Scholar 

  6. S. L. Qiu, C. L. Lin, J. Chen, and M. Stronqin, Phys. Rev. B 41, 7467 (1990).

    Article  CAS  Google Scholar 

  7. E. Bertel, F. P. Netzer, and G. Rosina, Phys. Rev. B 39, 6082 (1989).

    Article  CAS  Google Scholar 

  8. E. Bertel, N. Memmel, W. Jacob, et al., Phys. Rev. B 39, 6087 (1989).

    Article  CAS  Google Scholar 

  9. M. W. Ruckman, J. Chen, S. L. Qin, P. Kuiper, and M. Stronqin, Phys. Rev. B 67, 2533 (1991).

    Article  CAS  Google Scholar 

  10. M. Pedio, Z. Y. Wu, M. Benfatto, et al., Phys. Rev. B 66, 4109 (2002).

    Article  Google Scholar 

  11. M. M. Islam, T. Bredow, and C. Minot, J. Phys. Chem. B 110, 9413 (2006).

    Article  CAS  Google Scholar 

  12. E. A. Mikajlo, H. E. Dorsett, and M. J. Ford, J. Chem. Phys. 120, 17099 (2004).

    Article  Google Scholar 

  13. A. Shukla, M. Dolg, and P. Fuide, J. Chem. Phys. 108, 8521 (1998).

    Article  CAS  Google Scholar 

  14. V. Maslyuk, M. M. Islam, and T. Bredow, Phys. Rev. B 72, 25101 (2005).

    Article  Google Scholar 

  15. V. Mauchamp, F. Boucher, G. Ouvrarf, and P. Moreaw, Phys. Rev. B 74, 5106 (2006).

    Article  Google Scholar 

  16. E. A. Mikajlo and M. J. Ford, J. Phys. Condens. Matter 15, 6955 (2003).

    Article  CAS  Google Scholar 

  17. R. D. Eithraj, G. Jaiganeshk, and G. Kalpana, Phys. B: Condens. Matter 396, 124 (2007).

    Article  Google Scholar 

  18. Z. Cancarevie, J. C. Schön, and M. Jansen, Phys. Rev. B 73, 4114 (2006).

    Google Scholar 

  19. H. Wu, H. Zhang, X. Cheng, and L. Cai, Philosoph. Magazine 87, 3373 (2007).

    Article  CAS  Google Scholar 

  20. Yu. N. Zhuravlev, Yu. M. Basalaev, and A. S. Poplavnoi, Teor. Eksp. Khim. 39(2), 72 (2003).

    Google Scholar 

  21. M. Allavena and E. Biaisten-Barojas, J. Chem. Phys. 75, 787 (1981).

    Article  CAS  Google Scholar 

  22. B. Tremblay, P. Roy, L. Manceron, et al., J. Chem. Phys. 103, 1284 (1995).

    Article  CAS  Google Scholar 

  23. P. Borowski, B. O. Roos, S. C. Racine, T. J. Lee, and S. Carter, J. Chem. Phys. 103, 266 (1995).

    Article  CAS  Google Scholar 

  24. R. Dovesi, V. R. Saunders, C. Roetti, et al., CRYSTAL 06 User’s Manual (Univ. of Torino, Torino, 2006).

    Google Scholar 

  25. M. Catti, G. Valerio, R. Dovesi, and M. Causa, Phys. Rev. B 49, 14179 (1994).

    Article  CAS  Google Scholar 

  26. L. Valenzano, F. J. Torres, F. Pascale, C. M. Zicovich-Wolson, and R. Doversi, Z. Phys. Chem. 220, 893 (2006).

    CAS  Google Scholar 

  27. L. Ojamue, K. Hermansson, C. Pisani, M. Caus, and C. Roetti, Acta Crystallogr., Sect. B: Struct. Sci. 50, 268 (1994).

    Article  Google Scholar 

  28. R. Dovesi, C. Roetti, Fava C. Freyria, M. Prencipe, and V. R. Saunders, Chem. Phys. 156, 11 (1991).

    Article  CAS  Google Scholar 

  29. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  30. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  Google Scholar 

  31. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  32. J. Paier, M. Marsman, K. Hummer, et al., J. Chem. Phys. 124, 4709 (2006).

    Article  Google Scholar 

  33. A. E. Mattsson, R. Armiento, J. Paier, et al., J. Chem. Phys. 128, 4714 (2008).

    Article  Google Scholar 

  34. J. Paier, M. Marsman, and G. Kresse, J. Chem. Phys. 127, 4103 (2007).

    Article  Google Scholar 

  35. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993).

    Article  CAS  Google Scholar 

  36. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  37. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. A 37, 785 (1988).

    Article  CAS  Google Scholar 

  38. R. Wyckoff, Crystal Ctructures (Interscience, New York, 1963).

    Google Scholar 

  39. L. G. Cota and P. de la Mora, Acta Crystallogr. B 61, 133 (2005).

    Article  Google Scholar 

  40. R. L. Tallman, J. L. Margrave, and S. W. Bailey, JACSA 79, 2979 (1957).

    Article  CAS  Google Scholar 

  41. T. Bremm and U. Jansen, ZAACA 610, 64 (1992).

    CAS  Google Scholar 

  42. M. Ziegler, M. Rosenfeld, W. Kaenzug, and P. Fischer, HPACA 49, 57 (1976).

    CAS  Google Scholar 

  43. S. C. Abrahams and J. Kalnajs, Acta Crystal. 8, 503 (1955).

    Article  CAS  Google Scholar 

  44. W. Klein, K. Armbruster, and M. Jansen, Chem. Commun. 6, 707 (1998).

    Article  Google Scholar 

  45. T. Kellersohn, N. Korber, and M. Jansen, J. Am. Chem. Soc. 115, 11254 (1993).

    Article  CAS  Google Scholar 

  46. D. Bellert and W. H. Breckenridge, J. Chem. Phys. 114, 2871 (2001).

    Article  CAS  Google Scholar 

  47. L. Liu, V. E. Henrich, W. P. Ellis, and I. Shindo, Phys. Rev. B 54, 2236 (1996).

    Article  CAS  Google Scholar 

  48. S. L. Qiu, C. L. Lin, J. Chen, and M. Strongen, Phys. Rev. B 39(9), 6194 (1989).

    Article  CAS  Google Scholar 

  49. J. X. Wu, M. S. Ma, X. M. Liu, J. S. Zhu, and M. R. Ji, Phys. Rev. B 51, 14286 (1995).

    Article  CAS  Google Scholar 

  50. A. U. Khan and S. D. Mahanti, J. Chem. Phys. 63, 2271 (1975).

    Article  CAS  Google Scholar 

  51. M. L. Shek, X. Pan, M. Strongin, and M. W. Ruckman, Phys. Rev. B 34, 3741 (1986).

    Article  CAS  Google Scholar 

  52. M. S. Ma, M. R. Ji, W. W. Cai, et al., Phys. Rev. B 56, 4913 (1997).

    Article  CAS  Google Scholar 

  53. J. X. Wu, M. S. Ma, H. G. Zheny, et al., Phys. Rev. B 60, 17102 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Zhuravlev.

Additional information

Original Russian Text © Yu.N. Zhuravlev, N.G. Kravchenko, O.S. Obolonskaya, 2010, published in Khimicheskaya Fizika, 2010, Vol. 29, No. 1, pp. 11–19.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuravlev, Y.N., Kravchenko, N.G. & Obolonskaya, O.S. The electronic structure of alkali metal oxides. Russ. J. Phys. Chem. B 4, 20–28 (2010). https://doi.org/10.1134/S1990793110010045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793110010045

Keywords

Navigation