Skip to main content
Log in

On the possibility of single-electron transfer during alkaline hydrolysis of sulfophthalides

  • Elementary Physicochemical Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

To fond memories of the outstanding scientist Lev Aleksandrovich Blumenfel’d on the occasion of his 90th birthday

Abstract

The previously observed generation of radical products during the alkaline hydrolysis of diphenylsulfophthalide (DPSP) and polydiphenylenesulfophthalide in dimethyl sulfoxide (DMSO) is indicative of the involvement of single-electron transfer (SET) in thses processes. The possibility of SET from the hydroxide ion (HI) to the sulfophthalide molecule is determined by the ratio between the ionization potential (IP) of the HI and electron affinity (EA) of the sulfophthalide. According to B3LYP/6-311+G(d,p) calculations for DPSP, EA ver = 0.06 eV and EA ad = 0.58 eV, whereas EA eff = 2.13 eV (with consideration of the C-O bond rupture in the sulfophthalide cycle). Such a value of the electron affinity cannot ensure SET from the HI, the ionization potential of which in DMSO reaches ∼5.25 eV. The EA of the carbocation formed from DPSP is 6.44 eV as calculated in the same approximation. A mode of SET from the HI to the carbocation intermediate formed during DPSP heterolysis in DMSO is proposed. Two possible modifications of the electron donor are considered. The possibility of occurrence of SET from the dimsyl ion and HI-DMSO complex is evaluated using the G3B3 method. The ionization potential of the dimsyl ion in DMSO is almost 1 eV lower than the IP of the HI, which makes the former a preferential donor in comparison with the HI. The ionization potential of the weak HI-DMSO complex even exceeds the IP of the HI; i.e., complexation does not improve the electron-donor properties of the hydroxide ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Zolotukhin, Sh. S. Akhmetzyanov, N. M. Shishlov, et al., Macromol. Chem. 193, 975 (1992).

    Article  CAS  Google Scholar 

  2. N. M. Shishlov, V. N. Khrustaleva, Sh. S. Akhmetzyanov, et al., Izv. Akad. Nauk, Ser. Khim., No. 2, 295 (2000).

  3. N. M. Shishlov, K. Yu. Murinov, Sh. S. Akhmetzyanov, and V. N. Khrustaleva, Izv. Akad. Nauk, Ser. Khim., No. 10, 2015 (1999).

  4. N. M. Shishlov, V. N. Khrustaleva, Sh. S. Akhmetzyanov, et al., Izv. Akad. Nauk, Ser. Khim..

  5. N. M. Shishlov, S. I. Maslennikov, V. N. Khrustaleva, et al., Dokl. Phys. Chem. 394, 27 (2004).

    Article  CAS  Google Scholar 

  6. A. Mustafa, Chem. Rev. 55, 195 (1954).

    Article  Google Scholar 

  7. R. V. Vizgert and E. S. Mitchenko, Synthesis and Reactivity of Sulfonic Acid Derivatives (Naukova dumka, Kiev, 1992) [in Russian].

    Google Scholar 

  8. D. W. Roberts and D. L. Williams, Tetrahedron 41, 1027 (1987).

    Article  Google Scholar 

  9. R. F. Langler, Sulfur Rep. 19, 1 (1996).

    Article  CAS  Google Scholar 

  10. K. A. Durkin, R. F. Langler, and N. A. Morrison, Can. J. Chem. 66, 3070 (1988).

    Article  CAS  Google Scholar 

  11. J. C. Baum, B. E. Black, I. Precedo, J. E. Gooehl, and R. F. Langler, Can. J. Chem. 73, 444 (1995).

    Article  CAS  Google Scholar 

  12. M. Ballester and I. Pascual, J. Org. Chem. 56, 841 (1991).

    Article  CAS  Google Scholar 

  13. D. T. Sawyer and J. L. Roberts, Acc. Chem. Res. 21, 469 (1988).

    Article  CAS  Google Scholar 

  14. G. V. Fomin, L. A. Blyumenfel’d, and V. A. Sukhorukov, Dokl. Akad. Nauk SSSR 157, 1199 (1964).

    CAS  Google Scholar 

  15. A. D. Goolsby and D. T. Sawyer, Anal. Chem. 40, 83 (1968).

    Article  CAS  Google Scholar 

  16. J. R. Smith, J. B. Kim, and W. C. Lineberger, Phys. Rev. A 55, 2036 (1997).

    Article  CAS  Google Scholar 

  17. R. G. Pearson, J. Am. Chem. Soc. 108, 6109 (1986).

    Article  CAS  Google Scholar 

  18. L. Eberson, Acta Chem. Scand., Ser. B 38, 439 (1984).

    Article  Google Scholar 

  19. K. Daasbjerg, S. R. Knudsen, K. N. Sonnichsen, et al., Acta Chem. Scand., Ser. B 53, 938 (1999).

    Article  CAS  Google Scholar 

  20. K. L. Handoo, K. Gadru, and C. K. Jain, Ind. J. Chem., Sect. A: Inorg. 22B, 526 (1983).

    CAS  Google Scholar 

  21. K. Umemoto, Y. Nagase, and Y. Sasaki, Bull. Chem. Soc. Jpn. 67, 3245 (1994).

    Article  CAS  Google Scholar 

  22. Z. V. Todres, Usp. Khim. 47, 260 (1978).

    CAS  Google Scholar 

  23. J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer, et al., Chem. Rev. 102, 231 (2002).

    Article  CAS  Google Scholar 

  24. J. Simons and K. D. Jordan, Chem. Rev. 87, 535 (1987).

    Article  CAS  Google Scholar 

  25. N. M. Shishlov, S. A. Pshenichnyuk, S. L. Khursan, and E. S. Shikhovtseva, in Collection of Articles, No. 13, pt. 2 (Inst. of Physics of Molecules and Crystals, Ural Branch Russian Academy of Sciences, Ufa, 2006), p. 421 [in Russian].

    Google Scholar 

  26. M. F. Budyka and T. S. Zyubina, J. Mol. Struct.: THEOCHEM 419, 191 (1997).

    Article  CAS  Google Scholar 

  27. J.-M. Saveant, Adv. Phys. Org. Chem. 35, 117 (2000).

    Article  Google Scholar 

  28. J. R. Pliego and J. M. Riveros, Phys. Chem. Chem. Phys. 4, 1622 (2002).

    Article  CAS  Google Scholar 

  29. L. A. Blumenfeld, L. V. Bryukhovetskaya, G. V. Fomin, and S. M. Shein, Zh. Fiz. Khim 44, 931 (1970).

    Google Scholar 

  30. E. C. Ashby, D. Coleman, and M. Gamasa, J. Org. Chem. 52, 4079 (1987).

    Article  CAS  Google Scholar 

  31. Sh. Fukuzumi and T. Yorisue, J. Am. Chem. Soc. 113, 7764 (1991).

    Article  CAS  Google Scholar 

  32. Sh. Fukuzumi, I. Nakanishi, Ju. Maruta, et al., J. Am. Chem. Soc. 120, 6673 (1998).

    Article  CAS  Google Scholar 

  33. J. L. Roberts, H. Sugimoto, W. C. Barrette, and D. T. Sawyer, J. Am. Chem. Soc. 107, 4556 (1985).

    Article  CAS  Google Scholar 

  34. C. D. Cooper, W. T. Naff, and R. N. Compton, J. Chem. Phys. 63, 2752 (1975).

    Article  CAS  Google Scholar 

  35. http://sesres.com/PhysicalProperties.asp

  36. L. J. McDowell, M. M. Khodaei, and D. Bethell, Org. Biomol. Chem. 1, 995 (2003).

    Article  CAS  Google Scholar 

  37. R. F. Langler, private communication.

  38. B. A. Trofimov, A. M. Vasil’tsov, and S. V. Amosova, Izv. Akad. Nauk SSSR, Ser. Khim., No. 4, 751 (1986).

  39. G. A. Russel, E. G. Janzen, and E. T. Strom, J. Am. Chem. Soc. 86, 1807 (1964).

    Article  Google Scholar 

  40. N. Kornblum and A. S. Erickson, J. Org. Chem. 46, 1037 (1981).

    Article  CAS  Google Scholar 

  41. M. F. Choi and P. Hawkins, Spectrochim. Acta A 51, 579 (1995).

    Article  Google Scholar 

  42. K. Okamoto, Y. Matsui, and H. Shingu, Bull. Chem. Soc. Jpn. 38, 153 (1965).

    Article  CAS  Google Scholar 

  43. K. A. Bilevich, N. N. Bubnov, and O. Yu. Okhlobystin, Tetrahedron Lett., No. 31, 3465 (1968).

  44. K. A. Bilevich, N. N. Bubnov, O. Yu. Okhlobystin, and N. G. Radzhabov, Izv. Akad. Nauk SSSR, Ser. Khim., No. 8, 1811 (1971).

  45. O. Yu. Okhlobystin, Electron Transfer in Organic Reactions (Rost. Univ., Rostov, 1974) [in Russian].

    Google Scholar 

  46. J.-M. Saveant, Adv. Phys. Org. Chem. 26, 1 (1990).

    Article  CAS  Google Scholar 

  47. R. A. Marcus, J. Phys. Chem. A 101, 4072 (1997).

    Article  CAS  Google Scholar 

  48. A. Houman, Chem. Rev. 108, 2180 (2008).

    Article  Google Scholar 

  49. T. Lund and H. Lund, Acta Chem. Scand., Ser. B 40, 470 (1986).

    Article  Google Scholar 

  50. H. Lund, K. Daasbjerg, T. Lund, and S. U. Pedersen, Acc. Chem. Res. 28, 313 (1995).

    Article  CAS  Google Scholar 

  51. C. P. Andrieux, A. Merz, J.-M. Saveant, and R. Tomahogh, J. Am. Chem. Soc. 108, 1957 (1984).

    Article  Google Scholar 

  52. M. Newcomb, T. R. Yarick, and S.-H. Goh, J. Am. Chem. Soc. 112, 5186 (1990).

    Article  CAS  Google Scholar 

  53. H. Jensen and K. Daasbjerg, J. Chem. Soc., Perkin Trans. 2, 1251 (2000).

    Google Scholar 

  54. E. B. Troughton, K. E. Molter, and E. M. Arnett, J. Am. Chem. Soc. 106, 6726 (1984).

    Article  CAS  Google Scholar 

  55. E. M. Arnett, K. E. Molter, E. C. Marchot, et al., J. Am. Chem. Soc. 109, 3788 (1987).

    Article  CAS  Google Scholar 

  56. J. Cheng, K. L. Handoo, and V. D. Parker, J. Am. Chem. Soc. 115, 2655 (1993).

    Article  CAS  Google Scholar 

  57. K. S. Peters, Chem. Rev. 107, 859 (2007).

    Article  CAS  Google Scholar 

  58. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry. Part A: Structure and Mechanisms (Springer, 2007).

  59. B. G. Gilbert, R. O. C. Norman, and R. G. Sealy, J. Chem. Soc., Perkin Trans. 2, 303 (1975).

    Google Scholar 

  60. T. Abe and Ya. Ikegami, Bull. Chem. Soc. Jpn. 49, 3227 (1976).

    Article  CAS  Google Scholar 

  61. N. M. Shishlov, Yu. V. Vasil’ev, V. V. Konovalov, and V. N. Korobeynikova, Radiat. Phys. Chem. 49, 451 (1997).

    Article  CAS  Google Scholar 

  62. M. C. R. Symons, J. Chem. Soc., Perkin Trans. 2, 908 (1976).

    Google Scholar 

  63. D. J. Nelson, J. Phys. Chem. 82, 1400 (1978).

    Article  CAS  Google Scholar 

  64. S. P. Urbanski, R. E. Stickel, and P. H. Wine, J. Phys. Chem. A 102, 10522 (1998).

    Article  CAS  Google Scholar 

  65. S. Jorgensen and H. G. Kjaergaard, J. Am. Chem. Soc. 114, 4857 (2010).

    Google Scholar 

  66. T. Endo, T. Miyazawa, Sh. Shiihashi, and M. Okawara, J. Am. Chem. Soc. 106, 3877 (1984).

    Article  CAS  Google Scholar 

  67. M. Hojo and D. T. Sawyer, Inorg. Chem. 28, 1201 (1989).

    Article  CAS  Google Scholar 

  68. I. Rosenthal, M. M. Mossoba, and P. Riesz, Can. J. Chem. 60, 1486 (1982).

    Article  CAS  Google Scholar 

  69. Ch. L. Upstad, Th.-B. Melu, H.-R. Sliwka, and V. Partali, Tetrahedron 65, 7616 (2009).

    Article  Google Scholar 

  70. K. Stolze and R. P. Mason, Biochem. Biophys. Res. Commun. 143, 941 (1987).

    Article  CAS  Google Scholar 

  71. A. A. Simonson and R. W. Murray, Anal. Chem. 47, 290 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Shishlov.

Additional information

Original Russian Text © N.M. Shishlov, S.L. Khursan, 2011, published in Khimicheskaya Fizika, 2011, Vol. 30, No. 10, pp. 11–22.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shishlov, N.M., Khursan, S.L. On the possibility of single-electron transfer during alkaline hydrolysis of sulfophthalides. Russ. J. Phys. Chem. B 5, 737–747 (2011). https://doi.org/10.1134/S1990793111090223

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793111090223

Keywords

Navigation