Skip to main content
Log in

Nanostructured titanium for biomedical applications: New developments and challenges for commercialization

  • Experiment
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

In this paper, the scientific basics for the production of nanostructured titanium using the technology of severe plastic deformation to manufacture medical implants for their wide use in trauma treatment, orthopaedics, and dentistry are presented. Special attention is paid to the physics and mechanics of methods of severe plastic deformation leading to the formation of nanostructured states in titanium. The influence of nanostructuring on the mechanical and biomedical properties of titanium is studied, and the advantages of applying nanostructured titanium for medical implants are considered in detail. Methods for commercialization of this new material are discussed in detail. An important step is the creation of the pilot commercial production of semiproducts, rods from nanostructured titanium with a length of more than 3 m and a diameter of 5–8 mm, for an annual production volume of 2 t.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine (Springer, Berlin, Germany, 2001).

    Google Scholar 

  2. A. I. Igolkin, “Titanium in Medicine,” Titan, No. 1, 86 (1993).

  3. S. L. Vasin, E. A. Nemets, N. V. Perova, et al., in Biocompatibility, Ed. by I. V. Sevast’yanov (VNIIMI, Moscow, 1999) [in Russian].

    Google Scholar 

  4. B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Metallography and Thermal Treatment of Nonferrous Metals and Alloys (Moscow Institute of Steel and Alloys, Moscow, 2001), p. 416 [in Russian].

    Google Scholar 

  5. R. Z. Valiev, “Preparation of Nanostructured Materials and Alloys with Unique Properties under Severe Plastic Deformation,” Ross. Nanotekhnol. 1, 208–216 (2006).

    Google Scholar 

  6. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced under Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  7. A. A. Popov, I. Yu. Pyshmintsev, S. L. Demakov, et al., “Structural and Mechanical Properties of Nanocrystalline Titanium Processed by Severe Deformation Processing,” Scr. Mater. 37, 1089–1094 (1997).

    Article  CAS  Google Scholar 

  8. A. V. Sergueeva, V. V. Stolyarov, R. Z. Valiev, and A. K. Mukherjee, “Advanced Mechanical Properties of Pure Titanium with Ultrafine-Grained Structure,” Scr. Mater. 45, 747–752 (2001).

    Article  CAS  Google Scholar 

  9. S. P. Malysheva, G. A. Salishchev, R. M. Galeev, et al., “Changes in the Structure and Mechanical Properties of Submicrocrystalline Titanium during Deformation in a Temperature Range of (0.15–0.45)T m,” Fiz. Met. Metalloved. 95(4), 98–105 (2003) [Phys. Met. Metallogr. 95 (4), 390–397 (2003)].

    CAS  Google Scholar 

  10. Yu. P. Sharkeev, A. Yu. Eroshenko, A. D. Bratchikov, et al., “Bulk Ultrafine-Grained Titanium with High Mechanical Properties for Medical Implants,” Nanotekhnika, No. 3, 81–87 (2007).

  11. C. Yao, E. B. Slamovich, J. Qazi, et al., “Improved Bone Cell Adhesion on Ultrafine-Grained Titanium and Ti-6Al-4V,” Ceram. Trans. 159, 239 (2005).

    CAS  Google Scholar 

  12. R. Z. Valiev and T. G. Langdon, “Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement,” Prog. Mater. Sci. 51, 881–981 (2006).

    Article  CAS  Google Scholar 

  13. V. V. Latysh, G. Kh. Salimgareeva, I. P. Semenova, et al., “A Method for Thermomechanical Treatment of Titanium Blanks,” RF Patent No. 2285737 RUC1, C22F1/18 (October 20, 2006).

  14. R. Z. Valiev, G. I. Raab, D. V. Gunderov, et al., “Development of the Severe Plastic Deformation Methods for Producing Bulk Nanostructured Materials with Unique mechanical Properties,” Nanotekhnika, No. 2, 32–43 (2006).

  15. R. Z. Valiev, A. V. Sergueeva, and A. K. Mukherjee, “The Effect of Annealing on Tensile Deformation Behavior of Nanostructured SPD Titanium,” Scr. Mater. 49, 669–674 (2003).

    Article  CAS  Google Scholar 

  16. I. P. Semenova, V. V. Latysh, G. Kh. Sadikova, and R. Z. Valiev, “Microstructure and Mechanical Properties of Long-Sized Titanium Rods with an Ultrafine-Grained Structure,” Fiz. Tekh. Vys. Davlenii (Donetsk, Ukr.) 15(1), 81–85 (2005).

    CAS  Google Scholar 

  17. Yu. R. Kolobov, R. Z. Valiev, A. P. Zhilyaev, et al., Grain Boundary Diffusion and Properties of Nanostructured Materials (Nauka, Novosibirsk, 2001; Cambridge International Science, Cambridge, 2007).

    Google Scholar 

  18. A. Yu. Vinogradov and S. Khasimoto, “Fatigue of Ultrafine-Grained Materials Produced by Equal-Channel Angular Pressing,” Metally, No. 1, 51–62 (2004).

  19. R. Z. Valiev, R. K. Islamgaliev, and I. P. Semenova, “Superplasticity in Nanostructured Materials: New Challenges,” Mater. Sci. Eng., A 463, 2–7 (2007).

    Article  Google Scholar 

  20. A. Yu. Vinogradov, V. V. Stolyarov, S. Hashimoto, and R. Z. Valiev, “Cyclic Behavior of Ultrafine-Grained Titanium Produced by Severe Plastic Deformation,” Mater. Sci. Eng., A 318 163–173 (2001).

    Article  Google Scholar 

  21. I. P. Semenova, G. Kh. Salimgareeva, V. V. Latysh, et al., “Enhancement of the Fatigue Properties of Titanium as a Result of the Formation of the Ultrafine-Grained Structure,” MiTOM (2007) (in press).

  22. G. Haritos, Th. Nicholas, and D. B. Lanning, “Notch Size Effects in HCF Behavior of Ti-6Al-4V,” Int. J. Fatigue 21 643–652 (1999).

    Article  CAS  Google Scholar 

  23. E. Eisenbarth, D. Velten, K. Schenk-Meuser, et al., “Interactions between Cells and Titanium Surfaces,” Biomol. Eng. 19, 243 (2002).

    Article  CAS  Google Scholar 

  24. S. Faghihi, A. P. Zhilyaev, J. A. Szpunar, et al., “Nanostructuring of a Titanium Material by High-Pressure Torsion Improves Pre-Osteoblast Attachment,” Adv. Mater. 19, 1069–1073 (2007).

    Article  CAS  Google Scholar 

  25. C. N. Elias, J. H. C. Lima, R. Valiev, and M. A. Meyers, “Biomedical Applications of Titanium and Its Alloys,” JOM 60(3), 46–49 (2008).

    Article  CAS  Google Scholar 

  26. S. Faghihi, F. Azari, A. P. Zhilyaev, et al., “Cellular and Molecular Interactions between MC3T3-E1 Pre-Osteoblasts and Nanostructured Titanium Produced by High-Pressure Torsion,” Biomaterials 28, 3887–3895 (2007).

    Article  CAS  Google Scholar 

  27. J. Petruzelka, L. Dluhos, D. Hrusak, and J. Sochova, Nanostructured Titanium—Application in Dental Implants (Technical University of Ostrava, Ostrava, Czech Republic, 2006), pp. 177–185.

    Google Scholar 

  28. “A Device for Correction and Fixation of the Spine,” RF Patent No. 2 003 121 585 (July 18, 2005).

  29. L. S. Morais, G. G. Serra, C. A. Muller, et al., “Titanium Alloy Mini-Implants for Orthodontic Anchorage: Immediate Loading and Metal Ion Release,” Biomaterialia 3, 331–339 (2007).

    Article  CAS  Google Scholar 

  30. L. K. Shamina, “Potential of the Enterprise,” Innovatsii, No. 9, 58 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Z. Valiev.

Additional information

Original Russian Text ©R.Z. Valiev, I.P. Semenova, V.V. Latysh, A.V. Shcherbakov, E.B. Yakushina, 2008, published in Rossiiskie nanotekhnologii, 2008, Vol. 3, Nos. 9–10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valiev, R.Z., Semenova, I.P., Latysh, V.V. et al. Nanostructured titanium for biomedical applications: New developments and challenges for commercialization. Nanotechnol Russia 3, 593–601 (2008). https://doi.org/10.1134/S1995078008090097

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078008090097

Keywords

Navigation