Skip to main content
Log in

Nanotechnologies for the formation of medical implants based on titanium alloys with bioactive coatings

  • Reviews
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The main approaches to the formation of modern functional materials for medical implants, including the principles of material choice on the criteria of their biochemical and biomechanical compatibility and their technological effectiveness, are represented in this review. Titanium alloys are considered the most prospective and extended materials for implants in traumatology, orthopedics, and stomatology. The trend over the last decade has been to exclude alloying components that may cause local allergic reactions on living tissues or general toxic effects on an organism from the structure of titanium alloys. One compromise to preserve high biochemical compatibility with the necessary increase in the mechanical properties of titanium alloys is based on the formation of submicrocrystalline (SMC) or nanostructured (NS) states in commercially pure titanium. The prospect of using SMC and NS titanium as a material for manufacturing implants is proven. An analysis of the results of experimental and theoretical research of the diffusion features on intergranular areas is carried out, and the role of diffusion-controlled processes in the formation of a microstructure of metals and alloys, as well as the microstructured state, is discussed. The efficiency of computer simulation on an atomic level in establishing the dependence of diffusion characteristics on intergranular areas from the average grain size and the structural state of internal boundaries of section is proven. A short description of simulation and semi-industrial methods of the formation of SMC and NS states in metals and alloys by means of severe plastic deformation—which are known as materials related to the “top-down approach,” assuming the initial structure is crushed to nanosized components—is presented. Special attention is given to the recent developed of low-cost and high-efficiency technological schemes for the mass production of nanostructured titanium alloys for medical purposes, including radial-shift and screw rollings, along with a combination of traditional methods of mechanical-thermal processing, which make it possible to receive an assortment of the titanium and its alloys necessary for the mass production of medical implants and tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. Hench and J. R. Jones, Biomaterials, Artificial Organs, and Tissue Engineering (CRC Press, Boca Raton, FL, United States, 2005; Tekhnosfera, Moscow, 2007), p. 304.

    Google Scholar 

  2. Matthias Epple, Handbook of Biomineralization: Medical and Clinical Aspects (Wiley, New York, 2007; Veter, Tomsk, Russia, 2007).

    Google Scholar 

  3. D. P. Kiryukhin, I. P. Kim, and V. M. Bouznik, “Radiation-Chemical Processes for Fabrication of Protective Coatings and Composite Materials with the Use of Fluorinated Monomers,” Khim. Vys. Energ. 42(5) 346353 (2008) [High Energy Chem. 42 (5), 346–353 (2008)].

    Google Scholar 

  4. Yu. R. Kolobov, A. V. Karlov, I. S. Bushnev, and E. E. Sagymbaev, “Untersushung von Structur und Phasenzustand und Mechanishen Eigenschatten der bioinerten und bioactiven schichten auf titanfegierungen fur Traumatologie und Ortopedie,” Biomed. Tech. 41(1), 417 (1996).

    Article  Google Scholar 

  5. S. M. Barinov and V. S. Komlev, Calcium Phosphate Based Bioceramics for Bone Tissue Engineering (Nauka, Moscow, 2005; Trans Tech, Zurich, Switzerland, 2008).

    Google Scholar 

  6. Yu. D. Tret’yakov, A. V. Soin, A. V. Kuznetsov, M. N. Pul’kin, A. G. Veresov, and V. I. Putlyaev, “Calcium Phosphate Biomaterials: A Pathway to Enhanced Bioactivity Passes through the Anion Modification of the Chemical Composition of Hap,” Tekhnol. Zhivykh Sist. 2(1–2), 11–17 (2005).

    Google Scholar 

  7. V. I. Kalita, “Physics and Chemistry of the Formation of Bioinactive and Bioactive Surfaces on Implants” Fiz. Khim. Obrab. Mater., No. 5, 28–45 (2000).

  8. V. E. Gyunter, G. E. Dambaev, P. G. Sysolyatin, R. V. Zigan’shin, and N. A. Molchanov, Medical Materials and Shape-Memory Implants (Tomsk State University, Tomsk, Russia, 1998) [in Russian].

    Google Scholar 

  9. M. Z. Mirgazizov, V. E. Gyunter, and V. I. Itin, Superelastic Implants and Devices of Shape Memory Alloys in Dentistry (Quintessenz, Berlin, 1993).

    Google Scholar 

  10. D. V. Shtansky, N. A. Glushankova, A. N. Sheveiko, M. A. Kharitonova, T. G. Moizhess, E. A. Levashov, and F. Rossi, “Design, Characterization, and Testing of Ti-Based Multicomponent Coatings for Load-Bearing Biomedical Applications,” Biomaterials 26(16), 2909–2924 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. A. A. Il’in, S. V. Skvortsova, A. M. Mamonov, and V. N. Karpov, “Application of Materials Based on Titanium and Its Alloys for the Fabrication of Medical Implants,” Metally, No. 3, 97–104 (2002).

  12. M. V. Kostina, O. A. Bannykh, V. M. Blinov, E. V. Blinov, and V. N. Karpov, “A Novel High-Strength Corrosion-Resistant Alloy for Surgical Instruments,” Al’m. Klin. Med. 17(2), 92–95 (2008).

    Google Scholar 

  13. A. A. Tager, Physical Chemistry of Polymers (Khimiya, Moscow, 1968; Mir, Moscow, 1978).

    Google Scholar 

  14. G. Brankov, Fundamental Problems of Biomechanics (Bulgarian Academy of Sciences, Sofia, 1978; Mir, Moscow, 1981) [in Bulgarian and in Russian].

    Google Scholar 

  15. I. V. Knets, G. O. Pfafrod, and Yu. Zh. Saulgozis, Deformation and Fracture of Solid Biological Tissues (Zinantne, Riga, 1980) [in Russian].

    Google Scholar 

  16. Mitsuo Niinomi, “Mechanical Biocompatibilities of Titanium Alloys for Biomedical Applications,” J. Mech. Behav. Biomed. Mater. 1, 30–42 (2008).

    Article  PubMed  Google Scholar 

  17. M. Long and H. J. Rack, “Titanium Alloys in Total Joint Replacement—A Materials Science Perspective,” Biomaterials 19, 1621 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. R. Thull, “Naturwissenschaftliche Aspekte von Werkstoffen in der Medizin (Natural-Science Aspects of Materials in Medicine),” Naturwissenschaften 81, 481–488 (1994).

    Article  CAS  PubMed  ADS  Google Scholar 

  19. V. I. Itin and Yu. S. Naiborodenko, High-Temperature Synthesis of Intermetallic Compounds (Tomsk State University, Tomsk, Russia, 1989) [in Russian].

    Google Scholar 

  20. V. E. Gyunter, V. I. Itin, L. A. Monasevich, Yu. A. Paskal’, and V. V. Kotenko, Shape-Memory Effects and Their Applications in Medicine (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  21. V. I. Itin, V. E. Gyunter, S. A. Shabalovskaya, and R. L. C. Sachdeva, “Mechanical Properties and Shape Memory of Porous Nitinol,” Mater. Charact. 32(3), 179–189 (1994).

    Article  CAS  Google Scholar 

  22. Yoshimitsu Okazaki, Sethumadhvan Rao, Yoshimasa Ito, and Tetsuya Tateishi, “Corrosion Resistance, Mechanical Properties, Corrosion Fatigue Strength, and Cytocompatibility of New Ti Alloys without Al and V,” Biomaterials 19 1197–1215 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. A. K. Mishra, J. A. Davidson, R. A. Poggie, P. Kovacs, and T. J. Fitzgerald, “Mechanical and Tribological Properties and Biocompatibility of Diffusion Hardened Titanium-13Nb-13Zr,” in American Society for Testing and Materials STP, Vol. 1272: Medical Applications of New Titanium and Its Alloys: The Material and Biological Issues, Ed. by S. A. Brown and J. E. Lemons (Amer ican Society for Testing and Materials, West Conshohocken, PA, United States, 1996), pp. 96–113.

    Google Scholar 

  24. L. D. Zardiackas, D. W. Mitchell, and J. A. Disegi, “Characterization of Titanium-15Mo Beta Titanium Alloy for Orthopedic Implant Applications,” in American Society for Testing and Materials STP, Vol. 1272: Medical Applications of New Titanium and Its Alloys: The Material and Biological Issues, Ed. by S. A. Brown and J. E. Lemons (American Society for Testing and Materials, West Conshohocken, PA, United States, 1996), pp. 60–75.

    Google Scholar 

  25. M. A. Khan, R. L. Williams, and D. F. Williams, “Conjoint Corrosion and Wear in Titanium Alloys,” Biomaterials 20, 765–772 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. T. Zhou, M. Aindow, S. P. Alpay, M. J. Blackburn, and M. H. Wu, “Pseudo-Elastic Deformation Behavior in a Ti/Mo-Based Alloy,” Scr. Mater. 50, 343–348 (2004).

    Article  CAS  Google Scholar 

  27. Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, A. P. Zhilyaev, and E. F. Dudarev, Grain-Boundary Diffusion and Properties of Nanostructured Materials (Nauka, Novosibirsk, 2001; Cambridge International Science, Cambridge, United Kingdom, 2007).

    Google Scholar 

  28. M. B. Ivanov, Yu. R. Kolobov, and T. N. Vershinina, “Structure and Mechanical Properties of the Ultrafine-Grained VT6 Titanium Alloy after Thermal Mechanical Treatment in Combination with Reversible Alloying with Hydrogen,” Titan 19(2), 60–62 (2006).

    Google Scholar 

  29. Yu. R. Kolobov, G. P. Grabovetskaya, N. V. Girsova, R. Z. Valiev, Zh. Yu. Teodor, V. V. Stolyarov, and A. I. Zharikov, “The Method for Fabricating a High-Strength Foil from Titanium,” RF Patent No. 2 243 835 (July 17, 2003), Byull. Izobret., No. 1 (2005).

  30. Yu. R. Kolobov, G. P. Grabovetskaya, M. B. Ivanov, A. P. Zhilyaev, and R. Z. Valiev, “Grain-Boundary Diffusion Characteristics of Nanostructured Nickel,” Scr. Mater. 44(6), 873–878 (2001).

    Article  CAS  Google Scholar 

  31. Yu. R. Kolobov, I. V. Ratochka, K. V. Ivanov, and A. G. Lipnitskii, “Characteristic Features of Diffusion-Controlled Processes in Ordinary and Ultrafine-Grained Polycrystalline Metals,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 8, 49–64 (2004) [Russ. Phys. J. 47 (8), 840–856 (2004)].

  32. Yu. R. Kolobov, O. A. Kashin, E. E. Sagymbaev, E. F. Dudarev, L. S. Bushnev, G. P. Grabovetskaya, G. P. Pochivalova, N. V. Girsova, and V. V. Stolarov, “Structure and Mechanical and Electrochemical Properties of Ultrafine-Grained Titanium,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 1, 77–85 (2000) [Russ. Phys. J. 43 (1), 71–78 (2000)].

  33. Yu. R. Kolobov, E. F. Dudarev, O. A. Kashin, Yu. R. Ko- lobov, E. F. Dudarev, O. A. Kashin, G. P. Grabovetskaya, G. P. Pochivalova, and R. Z. Valiev, “The Method for Fabricating Ultrafine-Grained Titanium Intermediate Products,” RF Patent No. 2 251 588 (June 3, 2003), Byull. Izobret., No. 13 (2005).

  34. O. A. Kashin, E. F. Dudarev, Yu. R. Kolobov, et al., “Evolution of the Structure and Mechanical Properties of Nanostructured Titanium in the Course of Thermal Mechanical Treatments,” Materialovedenie, No. 3, 25–30 (2003).

  35. Yu. R. Kolobov, G. P. Grabovetskaya, E. F. Dudarev, and K. V. Ivanov, “Preparation, Structure, and Mechanical Properties of Nanostructured Bulk Composite Materials for Medicine and Engineering,” Vopr. Materialoved., No. 1 (2004).

  36. Y. Chen and Chr. Schuh, “Contribution of Triple Junctions to the Diffusion Anomaly in Nanocrystalline Materials,” Scr. Mater. 57, 253 (2007).

    Article  CAS  Google Scholar 

  37. Yu. R. Kolobov, A. G. Lipnitskii, I. V. Nelasov, and G. P. Grabovetskaya, “Investigations and Computer Simulations of the Intergrain Diffusion in Submicroand Nanocrystalline Metals,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 4, 47–60 (2008) [Russ. Phys. J. 51 (4), 385–399 (2008)].

  38. V. Bokstein, M. Ivanov, Yu. Kolobov, and A. Ostovsky, “Grain-Boundary Diffusion in Consolidated Nanomaterials: Stress Effect on Grain-Boundary Diffusion,” in Nanodiffusion: Diffusion in Nanostructured Materials, Ed. by D. L. Beke, J. Metastable Nanocryst. Mater. 19, 69–107 (2004).

  39. R. Würschum, A. Kübler, S. Gruss, P. Scharwaechter, W. Frank, R. Z. Valiev, R. R. Mulyukov, and H.-E. Schaefer, “Tracer Diffusion and Crystalline Growth in Ultra-Fine-Grained Pd Prepared by Severe Plastic Deformation,” Ann. Chim. (Paris) 21(6–7), 471–482 (1996).

    Google Scholar 

  40. G. P. Grabovetskaya, I. V. Ratochka, Yu. R. Kolobov, and L. N. Puchkareva, “A Comparative Study of Grain-Boundary Diffusion of Copper in Ultrafine-Grained and Coarse-Grained Nickel,” Fiz. Met. Metalloved. 83(3), 112–116 (1997) [Phys. Met. Metallogr. 83 (3), 310–313 (1997)].

    CAS  Google Scholar 

  41. H. Tanimoto, P. Farber, R. Würschum, R. Z. Valiev, and H.-E. Schaefer, “Self-Diffusion in High-Density Nanocrystalline Fe,” Nanostruct. Mater. 12, 681–684 (1999).

    Article  Google Scholar 

  42. H. Tanimoto, L. Pasquini, R. Prümmer, H. Kronmüller, and H.-E. Schaefer, “Self-Diffusion and Magnetic Properties in Explosion Densified Nanocrystalline Fe,” Scr. Mater. 42(10), 961–966 (2000).

    Article  CAS  Google Scholar 

  43. Y. R. Kolobov, G. P. Grabovetskaya, K. V. Ivanov, R. Z. Valiev, and Y. T. Zhu, “Grain-Boundary Diffusion and Creep of Ultra-Fine-Grained Titanium and Ti-6Al-4V Alloy Processed by Severe Plastic Deformation,” in Proceedings of the Symposium on Ultrafine Grained Materials III, Charlotte, North Carolina, United States, March 14–18, 2004 (Charlotte, 2004), pp. 621628.

  44. G. P. Grabovetskaya, I. P. Mishin, I. V. Ratochka, S. G. Psakhie, and Yu. R. Kolobov, “Grain-Boundary Diffusion of Nickel in Submicrocrystalline Molybdenum Processed by Severe Plastic Deformation,” Pis’ma Zh. Tekh. Fiz. 33(4), 36–38 (2008) [Tech. Phys. Lett. 33 (4), 136–138 (2008)].

    Google Scholar 

  45. Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, A. P. Zhilyaev, E. F. Dudarev, K. V. Ivanov, M. B. Ivanov, O. A. Kashin, and E. V. Naidenkin, Grain-Boundary Diffusion and Properties of Nanostructured Materials (Cambridge International Science, Cambridge, United Kingdom, 2007).

    Google Scholar 

  46. N. I. Noskova and R. R. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys (Ural Brunch of the Russian Academy of Sciences, Yekaterinburg, 2003) [in Russian].

    Google Scholar 

  47. T. Surholt and Chr. Herzig, “Grain Boundary Self-Diffusion in Cu Polycrystals of Different Purity,” Acta Mater. 45(9), 3817–3823 (1997).

    Article  CAS  Google Scholar 

  48. A. G. Lipnitskii, A. V. Ivanov, and Yu. R. Kolobov, “Grain Boundary and Triple Junction Energies and Stability of Nanocrystalline Materials,” in Proceedings of the Second International Symposium “Physics and Mechanics of Large Plastic Strains,” St. Petersburg, Russia, June 4–9, 2007 (St. Petersburg, 2007), p. 37.

  49. A. G. Lipnitskii, A. V. Ivanov, and Yu. R. Kolobov, “Investigation of Grain-Boundary Stresses in Nanocrystalline Face-Centered Cubic Metals by the Molecular Statistics Method,” in Proceedings of the XVI International Conference “Physics of Strength and Plasticity of Materials,” Samara Russia, June 26–29, 2006 (Samara, 2006), Vol. 1, pp. 190–196.

    Google Scholar 

  50. T. Hammerschmidt, A. Kersch, and P. Vogl, “Embedded Atom Simulations of Titanium Systems with Grain Boundaries,” Phys. Rev. B: Condens. Matter 71, 205 409 (2005).

    Google Scholar 

  51. V. V. Rybin, Severe Plastic Deformations and Fracture of Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  52. V. I. Trefilov, Yu. V. Mil’man, and S. A. Firstov, Physical Fundamentals of the Strength of Refractory Metals (Naukova Dumka, Kiev, 1975) [in Russian].

    Google Scholar 

  53. Yu. R. Kolobov, Diffusion-Controlled Processes at Grain Boundaries and Ductility of Metallic Polycrystals (Nauka, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 1998) [in Russian].

    Google Scholar 

  54. V. E. Panin, “Physical Fundamentals of Mesomechanics of Plastic Deformation and Failure of Solids,” in Physical Mesomechanics of Heterogeneous Media and Computer-Aided Design of Materials, Ed. by V. E. Panin (Nauka, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 1995; Cambridge International Science, Cambridge, United Kingdom, 1998), Vol. 1, pp. 7–49.

    Google Scholar 

  55. V. A. Pavlov, “Severe Plastic Deformation and the Nature of Amorphization and Dispersion of Crystalline Systems,” Fiz. Met. Metalloved. 67(5), 924–944 (1989).

    CAS  Google Scholar 

  56. H. Gleiter, “Nanocrystalline Materials,” Prog. Mater. Sci 33, 223 (1989).

    Article  CAS  Google Scholar 

  57. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  58. F. J. Humphreys, P. B. Prangnell, J. R. Bowen, A. Gho- linia, and C. Harris, “Developing Stable Fine-Grain Microstructures by Large Strain Deformation,” Philos. Trans. R. Soc. London, Ser. A 357, 1663–1681 (1999).

    Article  CAS  ADS  Google Scholar 

  59. P. W. Bridgman, Studies in Large Plastic Flow and Fracture (McGraw-Hill, New York, 1952; Inostrannaya Literatura, Moscow, 1955).

    MATH  Google Scholar 

  60. V. A. Zhorin, I. F. Makarova, M. Ya. Gen, and N. S. Enikolopyan, “Formation of Metal Solid Solutions in the Course of Plastic Flow under High Pressure,” Dokl. Akad. Nauk SSSR 261(2), 405–408 (1981).

    CAS  Google Scholar 

  61. N. A. Smirnova, V. I. Levit, V. I. Pilyugin, P. I. Kuznetsov, L. S. Davydova, and V. A. Sazonova, “Evolution of the Structure of Face-Centered Cubic Single Crystals in the Course of Large Plastic Deformations,” Fiz. Met. Metalloved. 61(6), 1170–1177 (1986).

    CAS  Google Scholar 

  62. Ultrafine-Grained Materials Prepared by Severe Plastic Deformation: Special Issue, Ed. by R. Z. Valiev, Ann. Chim. (Paris) 21(6–7), 369 (1996).

  63. V. M. Segal, V. I. Reznikov, V. I. Kopylov, D. A. Pavlik, and V. F. Malyshev, Processes of Plastic Structure Formation of Metals (Navuka i Tekhnika, Minsk, 1994) [in Russian].

    Google Scholar 

  64. V. N. Varyukhin, V. Z. Spuskanyuk, N. I. Matrosov, A. B. Dugatko, B. A. Shevchenko, E. A. Medvedskaya, L. F. Sennikova, A. V. Spuskanyuk, and E. A. Pavlovskaya, “Equal-Channel Multiangular Extrusion,” Fiz. Tekh. Vys. Davlenii (Donetsk, Ukr.) 11(1), 31–39 (2001).

    Google Scholar 

  65. R. Z. Valiev, “Preparation of Nanostructured Materials and Alloys with Unique Properties under Severe Plastic Deformations,” Ross. Nanotekhnol. 1(1), 208–216 (2006).

    Google Scholar 

  66. G. A. Salishchev, O. R. Valiakhmetov, R. M. Galeev, and S. P. Malysheva, “Formation of a Submicrocrystalline Structure in Titanium in the Course of Severe Plastic Deformation and Its Influence on the Mechanical Properties,” Metally, No. 4, 86–91 (1996).

  67. O. R. Valiakhmetov, R. M. Galeev, and G. A. Salishchev, “Mechanical Properties of the VT8 Titanium Alloy with a Submicrocrystalline Structure,” Fiz. Met. Metalloved., No. 10, 204–206 (1990).

    Google Scholar 

  68. O. A. Kaibyshev, G. A. Salishchev, R. M. Galleev, R. Ya. Litfullin, and O. R. Valiakhmetov, “The Method for Treatment of Titanium Alloys,” RF Patent No. 2 134 308 RU C1 6C 22F 1/18, Byull. Izobret., No. 22 (August 10, 1999).

  69. Yu. R. Kolobov, V. A. Vinokurov, E. V. Naidenkin, I. V. Ratochka, and N. V. Rozhintseva, “The Method for Preparation of the Material with an Ultra-Fine-Grained or Submicrocrystalline Structure in the Course of Severe Plastic Deformation,” RF Patent No. 2 334 582 RU C2 (July 13, 2006), Byull. Izobret., No. 27 (January 27, 2008).

  70. Ya. E. Beigel’zimer, V. N. Varyukhin, D. V. Orlov, and S. G. Synkov, Screw Extrusion-The Process of Deformation Accumulation (TEAN, Donetsk, Ukraine, 2003) [in Russian].

    Google Scholar 

  71. V. N. Varyukhin, A. B. Dugadko, N. I. Matrosov, V. Z. Spuskanyuk, L. F. Sennikova, E. A. Pavlovskaya, B. A. Shevchenko, and O. N. Mironova, “Regularities in the Hardening of Fibrous Nanomaterials Produced by Packet Hydrostatic Extrusion,” Fiz. Tekh. Vys. Davlenii (Donetsk, Ukr.) 13(1), 96–105 (2003).

    CAS  Google Scholar 

  72. S. G. Synkov, V. G. Synkov, and A. N. Sapronov, “Packet Hydrostatic Extrusion of Microfibers from Chromium-Nickel Steels,” Fiz. Tekh. Vys. Davlenii 6(2), 141–145 (1996).

    Google Scholar 

  73. M. I. Karpov, V. I. Vnukov, K. G. Volkov, N. V. Medved’, I. I. Khodos, and G. E. Abrosimova, “Capabilities of the Vacuum Rolling Method as a Tool for Fabricating Multilayer Composite Materials with Nanometer-Scale Thicknesses of Layers,” Materialovedenie, No. 1, 48–53 (2004).

  74. A. N. Shapoval, S. M. Gorbatyuk, and A. A. Shapoval, Intensive Processes of Metal Forming for Tungsten and Molybdenum under High Pressure (Ruda i Metally, Moscow, 2006) [in Russian].

    Google Scholar 

  75. S. P. Galkin, E. A. Kharitonov, and V. K. Mikhailov, “Reverse Radial-Shear Rolling: Physical Principles, Capabilities, and Advantages,” Titan, No. 1, 39–45 (2003).

  76. S. Yu. Belyaev, Yu. M. Bagazeev, and V. S. Dushin, “Enhancement of Technological Possibilities of the SRVP-130 Mill,” Titan, No. 1, 61–64 (2008).

  77. E. A. Kharitonov, P. L. Alekseev, and V. P. Romanenko, “Investigation of the Influence of the Technological Parameters on the Thermal State of Titanium Alloys in the Course of Reverse Radial-Shear Rolling,” Titan, No. 1, 43–46 (2006).

  78. S. P. Galkin, “The Method of Screw Rolling,” RF Patent No. 2 293 619 RU C1 (February 20, 2007).

  79. R. Z. Valiev, I. P. Semenova, V. V. Latysh, A. V. Shcherbakov, and E. B. Yakushina, “Nanostructured Titanium for Biomedical Applications: New Developments and Challenges for Commercialization,” Ross. Nanotekhnol. 3(9–10), 106–115 (2008) [Nanotechnol. Russ. 3 (9–10), 593–601 (2008)].

    Google Scholar 

  80. V. I. Kalita, A. G. Gnedovets, A. I. Mamaev, V. A. Mamaeva, V. B. Pisarev, D. A. Malanin, V. I. Mamonov, G. L. Snigur, and E. A. Krainov, “Formation of Porous Composite Coatings on the Surface of Implants with the Help of Low-Temperature Plasma,” Fiz. Khim. Obrab. Mater., No. 3, 39–47 (2005).

  81. Yu. R. Kolobov, O. A. Druchinina, M. B. Ivanov, V. V. Sirota, M. A. Lazebnaya, G. V. Khramov, Ya. V. Trusova, N. S. Sergeeva, and I. K. Sviridova, “Formation of Porous Composite Bioactive Coatings on the VT6 and VT16 Titanium Alloys by the Method of Microarc Oxidation Treatment,” NanoMikrosist. Tekh., No. 2, 48–53 (2009).

  82. Yu. R. Kolobov, N. N. Volkovnyak, M. B. Ivanov, A. A. Buzov, and V. P. Chuev, “The Method for Preparation of Nanosized Hydroxyapatite,” RF Patent No. 2 342 938 (January 10, 2009).

  83. Yu. R. Kolobov, N. N. Volkovnyak, and M. B. Ivanov, “The Method for Preparation of the Electrolyte Intended for Deposition of Bioactive Coatings,” Patent No. 2 345 181 (January 27, 2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. R. Kolobov.

Additional information

Original Russian Text © Yu.R. Kolobov, 2009, published in Rossiiskie nanotekhnologii, 2009, Vol. 4, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolobov, Y.R. Nanotechnologies for the formation of medical implants based on titanium alloys with bioactive coatings. Nanotechnol Russia 4, 758–775 (2009). https://doi.org/10.1134/S1995078009110020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078009110020

Keywords

Navigation