Skip to main content
Log in

Optical interferometric sensor based on thin layers of nanoporous anodized aluminum containing nanoparticles of noble metals

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The influence of chemical deposition of gold and silver on the sensory sensitivity of the films of nanoporous anodized aluminum oxide is studied. It is found that thin (~1 μm) porous oxide films containing nanoparticles of noble metals are highly sensitive to organic compounds in contrast to the blank porous films. It is established that the films possess selectivity of the spectral shift in the interference modulated spectrum of the reflected light to designated substances and exhibit large values of the spectral shifts in the coating solutions of glucose and ethanol. In detail, the effect of the formation of a Fabry-Perot nanointerferometer in oxide films with nanoparticles of gold or silver is reviewed, resulting in an enhanced interference pattern and, accordingly, increased sensory sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Cattrall, Chemical Sensors (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  2. D. Schmidt and A. Schwartz, Optoelektronische Bauelemente (VEB Verlag Technik, Berlin, 1988) [in German].

    Google Scholar 

  3. G. Gauglitz. “Direct optical sensors: principles and selected applications,” Anal. Bioanal. Chem. 381, 141–155 (2005).

    Article  Google Scholar 

  4. A. Brecht, G. Gauglitz, and W. Nahm. “Interferometric measurements used in chemical and biochemical sensors,” Analysis 20, 135–140 (1992).

    Google Scholar 

  5. V. S.-Y. Lin, K. Motesharei, K. S. Dancil, M. J. Sailor, and M. R. Ghadiri. “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).

    Article  Google Scholar 

  6. K.-P. S. Dancil, D. P. Greiner, and M. J. Sailor. “A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface,” J. Am. Chem. Soc 121, 7925–7930 (1999).

    Article  Google Scholar 

  7. O. Meskini, A. Abdelghani, A. Tlili, R. Mgaieth, N. Jaffrezic-Renault, and C. Martelet. “Porous silicon as functionalized material for immunosensor application,” Talanta 71, 1430–1433 (2007).

    Article  Google Scholar 

  8. M. P. Schwartz, S. D. Alvarez, and M. J. Sailor. “A porous SiO2 interferometric biosensor for quantitative determination of protein interactions: binding of protein A to immunoglobulins derived from different species,” Anal. Chem. 79, 327–334 (2007).

    Article  Google Scholar 

  9. C. Pacholski, C. Yu, G. M. Miskelly, D. Godin, and M. J. Sailor. “Reflective interferometric fourier transform spectroscopy: a self-compensating label-free immunosensor using double-layers of porous SiO2,” J. Am. Chem. Soc. 128, 4250–4252 (2006).

    Article  Google Scholar 

  10. L. M. Bonanno and L. A. DeLouise. “Whole blood optical biosensor,” Biosens. Bioelectron. 23, 444–448 (2007).

    Article  Google Scholar 

  11. V. T. Le, T. N. L. Le, and V. H. Nguyen. “Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures,” Sens. Actuators B 150, 112–119 (2010).

    Article  Google Scholar 

  12. M. Liu, N. Snapp, and H. Park. “Water photolysis with a cross-linked titanium dioxide nanowire anode,” Chem. Sci. 2, 80–87 (2011).

    Article  Google Scholar 

  13. P.-C. Chen, G. Shen, and C. Zhou. “Chemical sensors and electronic noses based on 1-D metal oxide nanostructures,” IEEE Trans. Nanotechnol. 7, 668–682 (2008).

    Article  Google Scholar 

  14. D. Zhang, H. Zhang, and Y. He. “In-situ thickness measurement of porous alumina by atomic force microscopy and the reflectance wavelength measurement from 400–1000 nm,” Microsc. Res. Tech. 69, 267–270 (2006).

    Article  Google Scholar 

  15. S. D. Alvarez, C.-P. Li, C. E. Chiang, I. K. Schuller, and M. J. Sailor. “A label-free porous alumina interferometric immunosensor,” ACS Nano 3, 3301–3307 (2009).

    Article  Google Scholar 

  16. G. Macias, L. P. Herna[acute]ndez-Eguía, J. Ferré-Borrull, J. Pallares, and L. F. Marsal. “Gold-coated ordered nanoporous anodic alumina bilayers for future label-free interferometric biosensors,” ACS Appl. Mater. Interfaces 5, 8093–8098 (2013).

    Article  Google Scholar 

  17. V. V. Shelkovnikov, G. A. Lyubas, and S. V. Korotaev, “Increased interference reflection spectra of nanoporous films of anodized aluminum in double electrochemical and chemical deposition of metal nanoparticles,” Fizikokhim. Poverkhn. Zashch. Mater. (in press).

  18. D. S. Xu, D. P. Chen, Y. J. Xu, X. S. Shi, G. L. Guo, L. L. Gui, and Y. Q. Tang. “Preparation of II–VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates,” Pure Appl. Chem. 72, 127–135 (2000).

    Google Scholar 

  19. J. Ferré-Borrull, J. Pallares, G. Macias, and L. F. Marsal. “Nanostructural engineering of nanoporous anodic alumina for biosensing applications,” Materials 7, 5225–5253 (2014).

    Article  Google Scholar 

  20. S. A. Alekseev, V. Lysenko, V. N. Zaitsev, and D. J. Barbier. “Application of infra-red interferometry for quantitative analysis of chemical groups grafted onto internal surface of porous silicon nanostructures,” Phys. Chem. C 111, 15217–15222 (2007).

    Article  Google Scholar 

  21. Y.-K. Chang, Z.-X. Lou, K.-D. Chang, and C.-W. Chang. “Universal scaling of plasmonic refractive index sensors,” Opt. Express 21, 1804 (2013).

    Article  Google Scholar 

  22. G. I. Romanovskaya, A. Yu. Olenin, and S. Yu. Vasil’eva. “Concentration of polycyclic aromatic hydrocarbons by chemically modified silver nanoparticles,” Russ. J. Phys. Chem. A 85, 274 (2011).

    Article  Google Scholar 

  23. Ch. M. Niemeyer. “Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science,” Angew. Chem. Int. Ed. 40, 4128–4158 (2001).

    Article  Google Scholar 

  24. N. G. Khlebtsov, V. A. Bogatyrev, B. N. Khlebtsov, L. A. Dykman, and P. Englebienne. “A multilayer model for gold nanoparticle bioconjugates: application to study of gelatin and human IgG adsorption using extinction and light scattering spectra and the dynamic light scattering method,” Colloid. J. 65, 622 (2003).

    Article  Google Scholar 

  25. C. R. Jonathan, A. J. Haes, A. D. McFarland, Ch. R. Yonzon, and R. P. van Duyne. “A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion,” J. Phys. Chem. B 107, 1772–1780 (2003).

    Article  Google Scholar 

  26. A. J. Haes and R. P. van Duyne. “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604 (2002).

    Article  Google Scholar 

  27. Ch. Satterfield, Heterogeneous Catalysis in Practice, McGraw-Hill Chemical Engineering Series (McGraw-Hill, New York, 1980).

    Google Scholar 

  28. Adsorption from Solution at the Solid Liquid II, Ed. by G. D. Parfit and C. H. Rochester (Academic, London, 1983).

  29. E. S. Ivanov, Inhibitors for Metal Corrosion in Acid Media (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  30. L. S. Jung, Ch. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee. “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).

    Article  Google Scholar 

  31. A. J. Haes, Sh. Zou, G. C. Schatz, and R. P. van Duyne. “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109–116 (2004).

    Article  Google Scholar 

  32. K. E. Shafer-Peltier, Ch. L. Haynes, M. R. Glucksberg, and R. P. van Duyne. “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc. 125, 588–593 (2003).

    Article  Google Scholar 

  33. D. A. Stuart, J. M. Yuen, N. Shah, O. Lyandres, Ch. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. van Duyne. “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78, 7211–7215 (2006).

    Article  Google Scholar 

  34. A. Santos, T. Kumeria, and D. Losic. “Optically optimized photoluminescent and interferometric biosensors base on nanoporous anodic alumina: a comparison,” Anal. Chem. 85, 7904–7911 (2013).

    Article  Google Scholar 

  35. T. Kumeria, M. M. Rahman, A. Santos, J. Ferré-Borrull, L. F. Marsal, and D. Losic. “Structural and optical nanoengineering of nanoporous anodic alumina rugate filters for real-time and label-free biosensing applications,” Anal. Chem. 86, 1837–1844 (2014).

    Article  Google Scholar 

  36. C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G.M. Miskelly. “Biosensing using porous silicon double- layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636–11645 (2005).

    Article  Google Scholar 

  37. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne. “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shelkovnikov.

Additional information

Original Russian Text © G.A. Lyubas, V.V. Shelkovnikov, S.V. Korotaev, 2016, published in Rossiiskie Nanotekhnologii, 2016, Vol. 11, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubas, G.A., Shelkovnikov, V.V. & Korotaev, S.V. Optical interferometric sensor based on thin layers of nanoporous anodized aluminum containing nanoparticles of noble metals. Nanotechnol Russia 11, 29–40 (2016). https://doi.org/10.1134/S1995078016010109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078016010109

Keywords

Navigation