Skip to main content
Log in

Influence of mechanical activation mode on morphology and phase composition of Al-2Mg-nC nanostructured composite material

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

This article discusses peculiar features of formation of the structure and phase composition of powdered nanostructured aluminum matrix composite materials reinforced by graphene-like structures obtained by combined mechanical activation. The morphology of the powders has been studied and a neural network model has been developed which describes the dynamics of crystallite disintegration upon mechanical activation as a function of processing time and concentration of carbon nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xudong Yang, Enzuo Liu, Chunsheng Shi, Chunnian He, Jiajun Li, Naiqin Zhao, and Katsuyoshi Kondoh, “Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility,” J. Alloys Compd. 563, 216–220 (2013).

    Article  Google Scholar 

  2. A. M. K. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, “Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites,” Composit. Sci. Technol. 70 (16), 2237–2241 (2010).

    Article  Google Scholar 

  3. Z. Y. Liu, S. J. Xu, B. L. Xiao, P. Xue, W. G. Wang, and Z. Y. Ma, “Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites,” Composites, Part A 43 (12), 2161–2168 (2012).

    Article  Google Scholar 

  4. I. A. Evdokimov, G. I. Pivovarov, V. D. Blank, V. V. Aksenenkov, A. N. Kirichenko, and V. E. Vaganov, “Metal-carbon composite material on base of aluminium,” Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 54 (7), 58–62 (2011).

    Google Scholar 

  5. F. A. Khalid, O. Beffort, U. E. Klotz, B. A. Keller, P. Gasser, and S. Vaucher, “Study of microstructure and interfaces in an aluminium–C60 composite material,” Acta Mater. 51 (15), 4575–4582 (2003).

    Article  Google Scholar 

  6. M. Popov, V. Medvedev, V. Blank, V. Denisov, A. Kirichenko, E. Tatiyanin, V. Aksenenkov, S. Perfilov, R. Lomakin, E. Diyakov, and V. Zaitsev, “Fulleride of aluminum nanoclusters,” J. Appl. Phys. 108 (9), 094317 (2010).

    Article  Google Scholar 

  7. I. A. Evdokimov, V. E. Vaganov, V. V. Reshetnyak, V. D. Blank, G. I. Pivovarov, S. A. Perfilov, A. N. Kirichenko, V. V. Aksenenkov, R. Kh. Bagramov, E. V. Tat’yanin, and L. A. Ivanov, “Structure and properties of nanostructured composite materials of aluminium-onions system,” Konstruk. Kompoz. Mater., No. 1, 43–48 (2013).

    Google Scholar 

  8. S. J. Yan, S. L. Dai, X. Y. Zhang, C. Yang, Q. H. Hong, J. Z. Chen, and Z. M. Lin, “Investigating aluminum alloy reinforced by graphene nanoflakes,” Mater. Sci. Eng. A 612, 440–444 (2014).

    Article  Google Scholar 

  9. S. Goussous, W. Xu, X. Wu, and K. Xia, “Al–C nanocomposites consolidated by back pressure equal channel angular pressing,” Composit. Sci. Technol. 69 (11–12), 1997–2001 (2009).

    Article  Google Scholar 

  10. A. Santos-Beltran, I. Estrada-Guel, M. Miki-Yoshida, and J. I. Barajas-Villaurei, “Microstructural and mechanical characterization of aluminium-graphite composies,” J. Metastable Nanocryst. Mater. 20–21, 133–138 (2004).

    Article  Google Scholar 

  11. J. M. Liang, M. T. Jia, X. Q. Guo, and D. L. Zhang, “Microstructural evolution and microhardness change of Al–7wt %Si–0.3wt %Mg alloy granules/powder particles during high energy ball milling,” Mater. Sci. Eng. 590, 307 (2014).

    Article  Google Scholar 

  12. A. V. Aborkin, D. M. Babin, and A. A. Zakharov, “Influence of number of passes during equal channel angular pressing on operating properties of aluminium alloy,” Materialoved., No. 11, 33–38 (2013).

    Google Scholar 

  13. I. V. Kisel’, V. N. Neskoromnyi, and G. A. Ososkov, “Application of neural networks in experimental physics,” Phys. Part. Nucl. 24, 657 (1993).

    Google Scholar 

  14. M. Yu. Murashkin, A. R. Kil’mametov, and R. Z. Valiev, “Structure and mechanical properties of an aluminum alloy 1570 subjected to severe plastic deformation by high-pressure torsion,” Phys. Met. Metallogr. 106 (1), 90–96 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Alymov.

Additional information

Original Russian Text © A.V. Aborkin, I.A. Evdokimov, V.E. Vaganov, M.I. Alymov, D.V. Abramov, K.S. Khor’kov, 2016, published in Rossiiskie Nanotekhnologii, 2016, Vol. 11, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aborkin, A.V., Evdokimov, I.A., Vaganov, V.E. et al. Influence of mechanical activation mode on morphology and phase composition of Al-2Mg-nC nanostructured composite material. Nanotechnol Russia 11, 297–304 (2016). https://doi.org/10.1134/S1995078016030022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078016030022

Navigation