Skip to main content
Log in

Generation of laser radiation by nanostructured solid active elements based on nanoporous aluminum oxide films activated with rhodamine 6G

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The generation of laser radiation by a solid active element based on a nanoporous aluminum oxide film activated with rhodamine 6G has been obtained for the first time in the geometry to reflection. The lasing is characterized by high-quality radiation with the absence of a spontaneous component. It is found that the application of silicone oil as the immersion substance reduces the generation threshold more than two times. The optimal concentration of rhodamine 6G molecules in the impregnation solution for mirror films of nanoporous aluminum oxide is determined, at which the dye fluorescence intensity has the maximum value. The generation by a nanoporous aluminum oxide film activated with rhodamine 6G in the continuous mode has been obtained for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Zemskii, Yu. L. Kolesnikov, and I. K. Meshkovskii, Physics and Technology of Pulsed Dye Lasers (SPbGU ITMO, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  2. W. Zhang, J. Yao, and Y. S. Zhao, “Organic micro/nanoscale lasers,” Acc. Chem. Res. 49, 1691–1700 (2016).

    Article  Google Scholar 

  3. Y. J. Li, Y. Yan, Y. S. Zhao, and J. Yao, “Construction of nanowire heterojunctions: photonic function-oriented nanoarchitectonics,” Adv. Mater. 28, 1319–1326 (2016).

    Article  Google Scholar 

  4. F. A. Bol’shchikov, E. A. Garibin, P. E. Gusev, A. A. Demidenko, M. V. Kruglova, M. A. Krutov, A. A. Lyapin, I. A. Mironov, V. V. Osiko, V. M. Reitirov, P. A. Ryabochkina, N. V. Sakharov, A. N. Smirnov, S. N. Ushakov, and P. P. Fedorov, “Nanostructured Tm:CaF2 ceramics: potential gain media for two micron lasers,” Quantum Electron. 41, 193 (2011).

    Article  Google Scholar 

  5. H. W. Shin, S. Y. Cho, K. H. Choi, and Y. R. Kim, “Directional random lasing in dye-TiO2 doped polymer nanowire array embedded in porous alumina membrane,” Appl. Phys. Lett. 88, 263112 (2006).

    Article  Google Scholar 

  6. A. Costel, I. Garcia-Moreno, D. del Agua, O. García, R. Sastre, “Highlyphotostable solid-state dye lasers based on silicon-modified organic matrices,” J. Appl. Phys. 101, 731–742 (2007).

    Google Scholar 

  7. S. J. Marinho, L. M. Jesus, L. B. Barbosa, D. R. Ardila, M. Alencar, and J. J. Rodrigues, “Bi-chromatic random laser from alumina porous ceramic infiltrated with rhodamine B,” Laser Phys. Lett. 12, 055801–055805 (2015).

    Article  Google Scholar 

  8. A. Moadhen, H. Elhouichet, L. Nosova, and M. Oueslati, “Rhodamine B absorbed by anodic porous alumina: stokes and anti-stokes luminescence study,” J. Lumin. 126, 789–794 (2007).

    Article  Google Scholar 

  9. Z. Li and K. Huang, “Optical properties of alumina membranes prepared by anodic oxidation process,” J. Lumin. 127, 435–440 (2007).

    Article  Google Scholar 

  10. Z. L. Zhang, H. R. Zheng, J. Dong, X. Q. Yan, Y. Sun, and H. X. Xu, “Surface enhanced fluorescence by porous alumina with nanohole arrays,” Sci. China, Ser. G 55, 767–771 (2012).

    Article  Google Scholar 

  11. N. Kh. Ibrayev, A. K. Zeinidenov, A. K. Aimukhanov, and K. S. Napolskii, “Stimulated emission from aluminium anode oxide films doped with rhodamine 6G,” Quantum Electron. 45, 663 (2015).

    Article  Google Scholar 

  12. G. A. Lyubas, V. V. Shelkovnikov, and S. V. Korotaev, “Optical interferometric sensor based on thin layers of nanoporous anodized aluminum containing nanoparticles of noble metals,” Nanotechnol. Russ. 11, 29 (2016).

    Article  Google Scholar 

  13. V. V. Shelkovnikov, G. A. Lyubas, and S. V. Korotaev, “Enhanced reflective interference spectra of nanoporous anodic alumina films by double electrochemical deposition of chemical metal nanoparticles,” Prot. Met. Phys. Chem. Surf. 52, 227 (2016).

    Article  Google Scholar 

  14. V. V. Shelkovnikov, G. A. Lyubas, and S. V. Korotaev, “Controlled interference color of the metal surface by combination of the chemical and electrochemical aluminum surface treatment,” Nanosyst.: Phys., Chem., Math. 5, 718–727 (2014).

    Google Scholar 

  15. T. Kumeria, M. M. Rahman, A. Santos, J. Ferré-Borrull, L. F. Marsal, and D. Losic, “Structural and optical nanoengineering of nanoporous anodic alumina rugate filters for real-time and label-free biosensing applications,” Anal. Chem. 86, 1837–1844 (2014).

    Article  Google Scholar 

  16. A. Santos, T. Kumeria, and D. Losic, “Nanoporous anodic alumina: a versatile platform for optical biosensors,” Materials 7, 4297–4320 (2014).

    Article  Google Scholar 

  17. A. Santos, T. Kumeria, and D. Losic, “Optically optimized photoluminescent and interferometric biosensors base on nanoporous anodic alumina: a comparison,” Anal. Chem. 85, 7904–7911 (2013).

    Article  Google Scholar 

  18. J. Ferré-Borrull, M. M. Rahman, J. Pallares, and L. F. Marsal, “Tuning nanoporous anodic alumina distributed- bragg reflectors with the number of anodization cycles and the anodization temperature,” Nanoscale Res. Lett. 9, 416–422 (2014).

    Article  Google Scholar 

  19. J. Ferré-Borrull, J. Pallares, G. Macias, and L. F. Marsal, “Nanostructural engineering of nanoporous anodic alumina for biosensing applications,” Materials 7, 5225–5253 (2014).

    Article  Google Scholar 

  20. G. Macias, L. P. Hernández-Eguía, J. Ferré-Borrull, J. Pallares, and L. F. Marsal, “Gold-coated ordered nanoporous anodic alumina bilayers for future labelfree interferometric biosensors,” ACS Appl. Mater. Interfaces 5, 8093–8098 (2013).

    Article  Google Scholar 

  21. V. B. Tatarskii, Crystal Optics and the Immersion Method (Nedra, Moscow, 1965) [in Russian].

    Google Scholar 

  22. R. Barbosa-Silva, A. F. Silva, A. M. Brito-Silva, and C. B. de Araújo, “Bichromatic random laser from a powder of rhodamine-doped sub-micrometer silica particles,” J. Appl. Phys. 115, 043515 (2014).

    Article  Google Scholar 

  23. P. Vaveliuk, A. M. de Brito-Silva, and P. C. de Oliveira, “Model for bichromatic laser emission from a laser dye with nanoparticle scatterers,” Phys. Rev. A 68, 013805 (2003).

    Article  Google Scholar 

  24. M. A. F. de Souza, A. Lencina, and P. Vaveliuk, “Controlling bichromatic emission in scattering gain media,” Opt. Lett. 31, 1244–1246 (2006).

    Article  Google Scholar 

  25. F. P. Schäfer, Dye Lasers (Springer, Berlin, 1990; Mir, Moscow, 1976).

    Google Scholar 

  26. O. Svelto, Principles of Lasers (Plenum, New York, 1976; Mir, Moscow, 1979).

    Google Scholar 

  27. Handbook of Laser Engineering, Ed. by A. P. Napartovich (Energoatomizdat, Moscow, 1991) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Lyubas.

Additional information

Original Russian Text © G.A. Lyubas, 2017, published in Rossiiskie Nanotekhnologii, 2017, Vol. 12, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubas, G.A. Generation of laser radiation by nanostructured solid active elements based on nanoporous aluminum oxide films activated with rhodamine 6G. Nanotechnol Russia 12, 276–284 (2017). https://doi.org/10.1134/S1995078017030089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078017030089

Navigation