Skip to main content
Log in

New Approaches to Nanotheranostics: Polyfunctional Magnetic Nanoparticles Activated by Non-Heating Low-Frequency Magnetic Field Control Biochemical System with Molecular Locality and Selectivity

  • Reviews: Nanobiology
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

In this work, a novel approach to magnetic nanotheranostics based on the activation of magnetic nanoparticles (MNPs) with a nonheating low-frequency magnetic field has been described. Electromagnetic biomedical technologies implemented in low-frequency nonheating and radiofrequency heating magnetic fields have been briefly reviewed and compared. It has been shown that the activation of MNPs with nonheating magnetic fields has several advantages over activation with heating magnetic fields, namely, a more universal character and penetration ability into tissues, easy dosage and control, higher locality and safety, molecular selectivity, and lower cost. A combination of methods developed and patented by us can form a technological platform for new-generation low-frequency magnetic theranostics which is significantly more effective and possesses more options than conventional radiofrequency theranostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kunjachan, J. Ehling, G. Storm, F. Kiessling, and T. Lammers, “Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects,” Chem. Rev. 115, 10907–10937 (2015).

    Article  CAS  Google Scholar 

  2. E.-K. Lim, T. Kim, S. Paik, S. Haam, Y.-M. Huh, and K. Lee, “Nanomaterials for theranostics: recent advances and future challenges,” Chem. Rev. 115, 327–394 (2015).

    Article  CAS  Google Scholar 

  3. M. S. Muthu, D. T. Leong, L. Mei, S.-S. Feng, M. S. Muthu, D. T. Leong, L. Mei, and S-S. Feng, “Nanotheranostics: application and further development of nanomedicine strategies for advanced theranostics,” Theranostics 4, 660–677 (2014).

    Article  CAS  Google Scholar 

  4. J. H. Ryu, S. Lee, S. Son, S. H. Kim, J. F. Leary, and K. C. I. C. Kwon, “Theranostic nanoparticles for future personalized medicine,” J. Control. Release 190, 477–484 (2014).

    Article  CAS  Google Scholar 

  5. T. H. Kim, S. Lee, and X. Chen, “Nanotheranostics for personalized medicine,” Expert Rev. Mol. Diagn. 13, 257–269 (2013).

    Article  CAS  Google Scholar 

  6. X. Chen, S. S. Gambhir, and J. Cheon, “Theranostic nanomedicine (topical collection of papers),” Acc. Chem. Res. 44, 841–1134 (2011).

    Article  CAS  Google Scholar 

  7. S. Kazakov, “Liposome-nanogel structures for future pharmaceutical applications: an updated review,” Curr. Pharm. Des. 22, 1391–1413 (2016).

    Article  CAS  Google Scholar 

  8. J. R. Mccarthy, “Multifunctional agents for concurrent imaging and therapy in cardiovascular disease,” Adv. Drug Deliv. Rev. 62, 1023–1030 (2011).

    Article  CAS  Google Scholar 

  9. L. Wang, M. C. Chuang, and J. A. Ho, “Nanotheranostics - a review of recent publications,” Int. J. Nanomed. 7, 4679–4695 (2012).

    CAS  Google Scholar 

  10. R. Vinhas, M. Cordeiro, F. F. Carlos, S. Mendo, A. R. Fernandes, S. Figueiredo, and P. V. Baptista, “Gold nanoparticle-based theranostics: disease diagnostics and treatment using a single nanomaterial. Review,” Nanobiosensors Dis. Diagn. 4, 11–23 (2015).

    Google Scholar 

  11. S. S. Kelkar and T. M. Reineke, “Theranostics: combining imaging and therapy,” Bioconjugate Chem. 22, 1879–1903 (2011).

    Article  CAS  Google Scholar 

  12. S. C. Baetke, T. Lammers, and F. Kiessling, “Applications of nanoparticles for diagnosis and therapy of cancer,” Brit. J. Radiol. 88, 20150207 (2015).

    Article  CAS  Google Scholar 

  13. S. Zapotoczny, K. Szczubialka, and M. Nowakowska, “Nanoparticles in endothelial theranostics,” Pharmacol. Rep. 67, 751–755 (2015).

    Article  CAS  Google Scholar 

  14. Y. Min, J. M. Caster, M. J. Eblan, and A. Z. Wang, “Clinical translation of nanomedicine,” Chem. Rev. 115, 11147–11190 (2015).

    Article  CAS  Google Scholar 

  15. J. Funkhouser, “Reinventing pharma: theranostic revolution,” Curr. Drug Discov. 2, 17–19 (2002).

    Google Scholar 

  16. S. Warner, “Diagnostics + therapy = theranostics,” Scientist 18 (16), 38–39 (2004).

    Google Scholar 

  17. SanPiN No. 2.2.4.3359-16, “Sanitary and epidemiological requirements to physical factors in the workplace,” Decree of the Chief RF State Sanitary Doctor No. 81 (2016).

    Google Scholar 

  18. “Extremely low frequency fields,” Environmental Health Criteria No. 238 (World Health Organization, 2007).

  19. “Human exposure to radiofrequency electromagnetic fields; reassessment of exposure to radiofrequency electromagnetic fields limits and policies,” Final Rule and Proposed Rule, 47 CFR Parts 1, 2, and 95, ET Docket No. 03–137, FCC 13–39, Fed. Commun. Commission, USA, Fed. Register, Rules Regulat. 78, 33634–33652 (2013).

  20. “Environmental and workplace health. Limits of human exposure to radiofrequency electromagnetic energy in the frequency range from 3 kHz to 300 GHz,”Safety Code No. 6 (Consumer and Clinical Radiation Protection Bureau Environmental and Radiation Health Sciences Directorate Healthy Environments and Consumer Safety Branch Health Canada, 2015).

  21. “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz),” Int. Commission on Non-Ionizing Radiation Protection ICNIRP Guidelines, Health Phys. 74, 494–522 (1998).

  22. “Guidelines for limiting exposure to time-varying electrical and magnetic fields (1 Hz–100 kHz),” Health Phys. 99, 818–836 (2010).

  23. I. A. Brezovich, “Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods,” in Biological, Physical and Clinical Aspects of Hyperthermia, Ed. by B. R. Paliwal, F. W. Hetzel, and M. W. Dewhirst, Med. Phys. Monogr. 16, 82–111 (1988).

    Google Scholar 

  24. L. Chang, X. L. Liu, D. D. Fan, Y. Q. Miao, H. Zhang, H. P. Ma, Q. Y. Liu, P. Ma, W. M. Xue, Y. E. Luo, and H. M. Fan, “The efficiency of magnetic hyperthermia and in vivo histocompatibility for human-like collagen protein-coated magnetic nanoparticles,” Int. J. Nanomed. 11, 1175–1185 (2016).

    CAS  Google Scholar 

  25. M. Obaidat, B. Issa, and Y. Haik, “Magnetic properties of magnetic nanoparticles for efficient hyperthermia,” Nanomaterials 5, 63–89 (2015).

    Article  CAS  Google Scholar 

  26. S. Dutz and R. Hergt, “Magnetic particle hyperthermia - a promising tumour therapy?,” Nanotechnology 25, 452001–452029 (2014).

    Article  CAS  Google Scholar 

  27. R. Hergt and S. Dutz, “Magnetic particle hyperthermia - biophysical limitations of a visionary tumour therapy,” J.Magn. Magn. Mater. 311, 187–192 (2007).

    Article  CAS  Google Scholar 

  28. R. Hergt, S. Dutz, R. Muller, and M. Zeisberger, “Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy,” J. Phys.: Condens. Matter 18, S2919–S2934 (2006).

    Google Scholar 

  29. S. Laurent, S. Dutz, U. O. Hafeli, and M. Mahmoudi, “Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles,” Adv. Colloid Interface Sci. 166, 8–23 (2011).

    Article  CAS  Google Scholar 

  30. A. B. Salunkhe, V. M. Khot, and S. H. Pawar, “Magnetic hyperthermia with magnetic nanoparticles: a status review,” Curr. Top. Med. Chem. 14, 572–594 (2014).

    Article  CAS  Google Scholar 

  31. Z. Ling-Yun, L. Jia-Yi, O. Wei-Wei, L. Dan-Ye, L. Li, L. Li-Ya, and T. Jin-Tian, “Magnetic-mediated hyperthermia for cancer treatment: research progress and clinical trials,” Chin. Phys. B 22, 108104-1–108104-14 (2013).

    Google Scholar 

  32. H. Kobayashi, K. Ueda, A. Tomitaka, T. Yamada, and Y. Takemura, “Self-heating property of magnetite nanoparticles dispersed in solution,” IEEE Trans. Magn. 47, 4151–4154 (2011).

    Article  CAS  Google Scholar 

  33. A. Jourdan, P. Wust, H. Fahling, W. John, A. Hinz, and R. Felix, “Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia,” Int. J. Hypertherm. 25, 499–511 (2009).

    Article  CAS  Google Scholar 

  34. W. Andrä, C. G. d’Ambly, R. Hergt, I. Hilger, and W. A. Kaiser, “Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia,” J. Magn. Magn. Mater. 194, 197–203 (1999).

    Article  Google Scholar 

  35. Y. Rabin, “Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense?,” Int. J. Hypertherm. 18, 194–202 (2002).

    Article  CAS  Google Scholar 

  36. P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys. 100, 054305 (2006).

    Article  CAS  Google Scholar 

  37. A. Gupta, R. S. Kane, and D.-A. Borca-Tasciuc, “Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles,” J. Appl. Phys. 108, 064901-1–064901-7 (2010).

    Google Scholar 

  38. Y. I. Golovin, S. L. Gribanovsky, D. Y. Golovin, N. L. Klyachko, A. G. Majouga, M. Sokolsky, and A. V. Kabanov, “Towards nanomedicines of the future: remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields,” J. Control. Release 219, 43–60 (2015).

    Article  CAS  Google Scholar 

  39. Y. I. Golovin, N. L. Klyachko, A. G. Majouga, M. Sokolsky, and A. V. Kabanov, “Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new generation nanomedicine,” J. Nanopart. Res. 19, 63 (2017).

    Article  CAS  Google Scholar 

  40. J. Estelrich, M. J. Sánchez-Martín, and M. A. Busquets, “Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents,” Int. J. Nanomed. 10, 1727–1741 (2015).

    CAS  Google Scholar 

  41. Y. Cai, C. Cao, X. He, C. Yang, L. Tian, R. Zhu, and Y. Pan, “Enhanced magnetic resonance imaging and staining of cancer cells using ferrimagnetic H-ferritin nanoparticles with increasing core size,” Int. J. Nanomed. 10, 2619–2634 (2015).

    CAS  Google Scholar 

  42. S.-F. Zhou, “Functional magnetic resonance imaging is a powerful approach to probing the mechanism of action of therapeutic drugs that act on the central nervous system,” Drug Design, Developm. Ther. 9, 3863–3865 (2015).

    Article  CAS  Google Scholar 

  43. L. Hou, H. Zhang, Y. Wang, L. Wang, X. Yang, and Z. Zhang, “Hyaluronic acid-functionalized singlewalled carbon nanotubes as tumor-targeting MRI contrast agent,” Int. J. Nanomed. 10, 4507–4520 (2015).

    CAS  Google Scholar 

  44. T. A. Cowger, W. Tang, Z. Zhen, K. Hu, D. E. Rink, T. J. Todd, G. D. Wang, W. Zhang, H. Chen, and J. Xie, “Casein-coated Fe5C2 nanoparticles with superior R2 relaxivity for liver-specific magnetic resonance imaging,” Theranostics 5, 1225–1232 (2015).

    Article  CAS  Google Scholar 

  45. M.-J. Gu, K.-F. Li, L.-X. Zhang, H. Wang, L.-S. Liu, Z.-Z. Zheng, N.-Y. Han, Z.-J. Yang, and T.-Y. Fan, “In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging,” Int. J. Nanomed. 10, 5187–5204 (2015).

    CAS  Google Scholar 

  46. H. Fattahi, S. Laurent, F. Liu, N. Arsalani, L. V. Elst, and R. N. Muller, “Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics,” Nanomedicine 6, 529–544 (2011).

    Article  CAS  Google Scholar 

  47. Z. S. Al-Ahmady, O. Chaloin, and K. Kostarelos, “Monoclonal antibody-targeted, temperature-sensitive liposomes: in vivo tumor chemotherapeutics in combination with mild hyperthermia,” J. Control. Release 196, 332–343 (2014).

    Article  CAS  Google Scholar 

  48. A. Hervault and N. T. K. Thanh, “Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer,” Nanoscale 6, 11553–11573 (2014).

    Article  CAS  Google Scholar 

  49. K. Hayashi, M. Nakamura, H. Miki, S. Ozaki, M. Abe, T. Matsumoto, W. Sakamoto, T. Yogo, and K. Ishimura, “Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release,” Theranostics 4, 834–843 (2014).

    Article  CAS  Google Scholar 

  50. Q. A. Pankhurst, N. T. K. Thanh, K. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D: Appl. Phys. 42, 224001 (2009).

    Article  CAS  Google Scholar 

  51. L. Torres-Lugo and C. Rinaldi, “Thermal potentiation of chemotherapy by magnetic nanoparticles,” Nanomedicine 8, 1689–1707 (2013).

    Article  CAS  Google Scholar 

  52. H. Oliveira, O. Sandre, and S. Lecommandoux, “Magnetic responsive polymer composite materials,” Chem. Soc. Rev. 42, 7099–7116 (2013).

    Article  CAS  Google Scholar 

  53. P. T. Yin, B. P. Shah, and K.-B. Lee, “Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells,” Small 10, 4106–4112 (2014).

    CAS  Google Scholar 

  54. Y. Qu, J. Li, J. Ren, J. Leng, C. Linc, and D. Shi, “Enhanced synergism of thermo-chemotherapy by combining highly efficient magnetic hyperthermia with magnetothermally-facilitated drug release,” Nanoscale 6, 12408–12413 (2014).

    Article  CAS  Google Scholar 

  55. K. Maier-Hauff, F. Ulrich, D. Nestler, H. Niehoff, P. Wust, B. Thiesen, H. Orawa, V. Budach, and A. Jordan, “Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme,” J. Neurooncol. 103, 317–324 (2011).

    Article  Google Scholar 

  56. N. Lee, D. Yoo, D. Ling, M. H. Cho, T. Hyeon, and J. Cheon, “Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy,” Chem. Rev. 115, 10637–10689 (2015).

    Article  CAS  Google Scholar 

  57. X. Cai, F. Yang, and N. Gu, “Applications of magnetic microbubbles for theranostics,” Theranostics 2, 103–112 (2012).

    Article  CAS  Google Scholar 

  58. I. Urries, C. Muñoz, L. Gomez, C. Marquina, V. Sebastian, M. Arruebo, and J. Santamaria, “Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications,” Nanoscale 6, 9230–9240 (2012).

    Article  Google Scholar 

  59. D. Yoo, J.-H. Lee, T.-H. Shin, and J. Cheon, “Theranostic magnetic nanoparticles,” Acc. Chem. Res. 44, 863–874 (2011).

    Article  CAS  Google Scholar 

  60. H. He, A. David, B. Chertok, A. Cole, K. Lee, J. Zhang, J. Wang, Y. Huang, and V. C. Yang, “Magnetic nanoparticles for tumor imaging and therapy: a so-called theranostic system,” Pharm. Res. 30, 2445–2458 (2013).

    Article  CAS  Google Scholar 

  61. S. K. Kamalapuram, R. K. Kanwar, K. Roy, R. Chaudhary, R. Sehgal, and J. R. Kanwar, “Theranostic multimodular potential of zinc-doped ferritesaturated metal-binding protein-loaded novel nanocapsules in cancers,” Int. J. Nanomed. 11, 1349–1366 (2016).

    CAS  Google Scholar 

  62. A. L. Buchachenko, Magneto-Biology and Medicine (Nova Science, New York, 2015).

    Google Scholar 

  63. V. N. Binhi, Principles of Electromagnetic Biophysics (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  64. V. N. Binhi and A. V. Savin, “Effects of weak magnetic fields on biological systems: physical aspects,” Phys. Usp. 46, 259 (2003).

    Article  CAS  Google Scholar 

  65. A. Yu. Grosberg, “A few remarks evoked by Binhi and Savin’s review on magnetobiology,” Phys. Usp. 46, 1113 (2003).

    Article  Google Scholar 

  66. R. L. Park, Voodoo Science: The Road from Foolishness to Fraud (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  67. A. Noy, Handbook of Molecular Force Spectroscopy (Springer, New York, 2008).

    Book  Google Scholar 

  68. T. Yanagida and Y. Ishii, Single Molecule Dynamics in Life Science (Wiley-VCH, Weinheim, 2009).

    Google Scholar 

  69. A. F. Oberhauser, Single-Molecule Studies of Proteins (Springer, New York, 2013).

    Book  Google Scholar 

  70. Magnetism in Medicine: A Handbook, 2nd ed., Ed. by W. Andra and H. Nowak (Wiley-VCH, Weinheim, 2007).

    Google Scholar 

  71. U. Steiner and N. Ulrich, “Magnetic field effects on chemical kinetics,” Chem. Rev. 89, 51–147 (1989).

    Article  CAS  Google Scholar 

  72. R. H. W. Funk, T. Monsees, and N. Özkucur, “Electromagnetic effects - from cell biology to medicine,” Prog. Histochem. Cytochem. 43, 177–264 (2009).

    Article  CAS  Google Scholar 

  73. A. Buchachenko, “Why magnetic and electromagnetic effects in biology are irreproducible and contradictory?,” Bioelectromagnetics 37, 1–13 (2016).

    Article  CAS  Google Scholar 

  74. A. L. Buchachenko, “Magnetic field-dependent molecular and chemical processes in biochemistry, genetics and medicine,” Russ. Chem. Rev. 83, 1 (2014).

    Article  CAS  Google Scholar 

  75. Dynamic Spin Chemistry: Magnetic Controls and Spin Dynamics of Chemical Reactions, Ed. by S. Nagakura, H. Hayashi, and T. Azumi (Wiley, New York, 1998).

    Google Scholar 

  76. B. Brocklehurst, “Magnetic fields and radical reactions: recent developments and their role in nature,” Chem. Soc. Rev. 31, 301–311 (2002).

    Article  CAS  Google Scholar 

  77. Yu. I. Golovin, “Magnetoplastic effects in solids,” Phys. Solid Stat. 46, 789 (2004).

    Article  CAS  Google Scholar 

  78. Yu. I. Golovin and R. B. Morgunov, “A new type of magnetoplastic effects in linear amorphous polymers,” Phys. Solid Stat. 43, 859 (2001).

    Article  CAS  Google Scholar 

  79. V. I. Alshits, E. V. Darinskaya, M. V. Koldaeva, and E. A. Petrzhik, “Magnetoplastic effect in nonmagnetic crystals,” in Dislocations in Solids (Elsevier, Amsterdam, 2008), Vol. 14, pp. 333–437.

    Google Scholar 

  80. P. J. Hore, “Are biochemical reactions affected by weak magnetic fields?,” Proc. Natl. Acad. Sci. U. S. A. 109, 1357–1358 (2012).

    Article  Google Scholar 

  81. K. M. Krishnan, “Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy,” IEEE Trans. Magn. 46, 2523–2558 (2010).

    Article  CAS  Google Scholar 

  82. Magnetic Nanoparticles. From Fabrication to Clinical Application, Ed. by N. T. K. Thanh (CRC, Boca Raton, 2012).

    Google Scholar 

  83. Magnetic Nanomaterials, Ed. by C. S. S. Kumar (Wiley-VCH, Weinheim, 2009).

    Google Scholar 

  84. Magnetic Nanoparticles, Ed. by S. P. Gubin (Wiley-VCH, Weinheim, 2009).

    Google Scholar 

  85. M. Banobre-Lopez, Y. Pineiro, M. A. Lopez-Quintela, and J. Rivas, “Magnetic nanoparticles for biomedical applications,” in Handbook of Nanomaterials Properties, Ed. by B. Bhushan (Springer, Berlin, Heidelberg, 2014), pp. 457–493.

    Chapter  Google Scholar 

  86. L. Reddy, J. L. Areas, J. Nicolas, and P. Couvreur, “Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications,” Chem. Rev. 112, 5818–5878 (2012).

    Article  CAS  Google Scholar 

  87. W. Wu, Z. Wu, T. Yu, C. Jiang, and W.-S. Kim, “Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications,” Sci. Technol. Adv. Mater. 16, 023501 (2015).

    Article  CAS  Google Scholar 

  88. A. Majouga, M. Sokolsky-Papkov, A. Kuznetsov, D. Lebedev, M. Efremova, E. Beloglazkina, P. Rudakovskaya, M. Veselov, N. Zyka, Y. Golovin, N. Klyachko, and A. Kabanov, “Enzyme-functionalized goldcoated magnetite nanoparticles as novel hybrid nanomaterials: synthesis, purification and control of enzyme function by low-frequency magnetic field,” Colloid. Surf., B 125, 104–109 (2015).

    Article  CAS  Google Scholar 

  89. N. Schleich, F. Danhier, and V. Préat, “Iron oxideloaded nanotheranostics: major obstacles to in vivo studies and clinical translation,” J. Control. Release 198, 35–54 (2014).

    Article  CAS  Google Scholar 

  90. A. K. Hauser, R. J. Wydra, N. A. Stocke, K. W. Anderson, and J. Z. Hilt, “Magnetic nanoparticles and nanocomposites for remote controlled therapies,” J. Control. Release 219, 76–94 (2015).

    Article  CAS  Google Scholar 

  91. S.-H. Liao, C.-H. Liu, B. P. Bastakoti, N. Suzuki, Y. Chang, Y. Yamauchi, F.-H. Lin, and K. C.-W. Wu, “Functionalized magnetic iron oxide/alginate coreshell nanoparticles for targeting hyperthermia,” Int. J. Nanomed. 10, 3315–3328 (2015).

    Article  CAS  Google Scholar 

  92. N. Schleich, C. Po, D. Jacobs, B. Ucakar, B. Gallez, F. Danhier, and V. Préat, “Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy,” J. Control. Release 194, 82–91 (2014).

    Article  CAS  Google Scholar 

  93. Y. Oh, M. S. Moorthy, P. Manivasagan, S. Bharathiraja, and J. Oh, “Magnetic hyperthermia and pHresponsive effective drug delivery to the sub-cellular level of human breast cancer cells by modified CoFe2O4 nanoparticles,” Biochimie 133, 7–19 (2017).

    Article  CAS  Google Scholar 

  94. A. Chiolerio, A. Chiodoni, P. Allia, and P. Martino, “Magnetite and other Fe-oxide nanoparticles,” in Handbook of Nanomaterials Properties, Ed. by B. Bhushan (Springer, Berlin, Heidelberg, 2014), pp. 213–246.

    Google Scholar 

  95. E. Reimhult and E. Amstad, “Stabilization and characterization of iron oxide superparamagnetic coreshell nanoparticles for biomedical applications,” in Handbook of Nanomaterials Properties, Ed. by B. Bhushan (Springer, Berlin, Heidelberg, 2014), pp. 355–387.

    Google Scholar 

  96. J. Landers, S. Salamon, H. Remmer, F. Ludwig, and H. Wende, “Simultaneous study of Brownian and Néel relaxation phenomena in ferrofluids by Mössbauer spectroscopy,” Nano Lett. 16, 1150–1155 (2016).

    Article  CAS  Google Scholar 

  97. C. Bustamante, Y. R. Chemla, N. R. Forde, and D. Izhaky, “Mechanical processes in biochemistry,” Ann. Rev. Biochem. 73, 705–748 (2004).

    Article  CAS  Google Scholar 

  98. Single Molecule Dynamics in Life Science, Ed. by T. Yanagida and Y. Ishii (Wiley-VCH, Weinheim, 2009).

    Google Scholar 

  99. B. Hu, J. Dobson, and A. J. El Haj, “Control of smooth muscle a-actin (SMA) up-regulation in HBMSCs using remote magnetic particle mechanoactivation,” Nanomed.: Nanotechnol. Biol. Med. 10, 45–55 (2014).

    Article  CAS  Google Scholar 

  100. C. K. Lee, Y. M. Wang, L. S. Huang, and S. Lin, “Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein-ligand interaction,” Micron 38, 446–461 (2007).

    Article  CAS  Google Scholar 

  101. S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Biomater. 3, 413–438 (2007).

    Article  Google Scholar 

  102. R. J. Mannix, S. Kumar, F. Cassiola, M. Montoya-Zavala, E. Feinstein, M. Prentiss, and D. E. Ingber, “Nanomagnetic actuation of receptor-mediated signal transduction,” Nat. Nanotechnol. 3, 36–40 (2008).

    Article  CAS  Google Scholar 

  103. A. Ikai, The World of Nano-Biomechanics. Mechanical Imaging and Measurement by Atomic Force Microscopy (Elsevier, Amsterdam, 2008).

    Google Scholar 

  104. Yu. I. Golovin, N. L. Klyachko, D. Yu. Golovin, M. V. Efremova, A. A. Samodurov, M. Sokol’ski-Papkov, and A. V. Kabanov, “A new approach to the control of biochemical reactions in a magnetic nanosuspension using a low-frequency magnetic field,” Tech. Phys. Lett. 39, 240 (2013).

    Article  CAS  Google Scholar 

  105. Yu. I. Golovin, N. L. Klyachko, M. Sokol’ski-Papkov, and A. V. Kabanov, “Single-domain magnetic nanoparticles as force generators for the nanomechanical control of biochemical reactions by low-frequency magnetic fields,” Bull. Russ. Acad. Sci.: Phys. 77, 1350 (2013).

    Article  CAS  Google Scholar 

  106. Yu. I. Golovin, S. L. Gribanovskii, N. L. Klyachko, and A. V. Kabanov, “Nanomechanical control of the activity of enzymes immobilized on single-domain magnetic nanoparticles,” Tech. Phys. 59, 932 (2014).

    Article  CAS  Google Scholar 

  107. Yu. I. Golovin, S. L. Gribanovskii, D. Yu. Golovin, N. L. Klyachko, and A. V. Kabanov, “Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules,” Phys. Solid Stat. 56, 1342 (2014).

    Article  CAS  Google Scholar 

  108. Yu. I. Golovin, N. L. Klyachko, S. L. Gribanovskii, D. Yu. Golovin, and A. G. Mazhuga, “Magnetomechanical control of drug release from functionalized magnetic nanoparticles,” Pis’ma Zh. Tekh. Fiz. 41 (14), 22–26 (2015).

    Google Scholar 

  109. Y. I. Golovin, S. L. Gribanovsky, D. Y. Golovin, A. O. Zhigachev, N. L. Klyachko, A. G. Majouga, M. Sokolsky, and A. V. Kabanov, “The dynamics of magnetic nanoparticles exposed to non-heating alternating magnetic field in biochemical applications: theoretical study,” J. Nanopart. Res. 19, 59 (2017).

    Article  CAS  Google Scholar 

  110. Yu. I. Golovin, N. L. Klyachko, S. L. Gribanovskii, D. Yu. Golovin, and A. G. Mazhuga, “Model of controlled drug release from functionalized magnetic nanoparticles by a nonheating alternating-current magnetic field,” Tech. Phys. Lett. 42, 267 (2016).

    Article  CAS  Google Scholar 

  111. Y. Golovin, D. Golovin, N. Klyachko, A. Majouga, and A. Kabanov, “Modeling drug release from functionalized magnetic nanoparticles actuated by nonheating low frequency magnetic field,” J. Nanopart. Res. 19, 64 (2017).

    Article  CAS  Google Scholar 

  112. L. J. Santos, R. L. Reis, and M. E. Gomes, “Harnessing magnetic mechano-actuation in regenerative medicine and tissue engineering,” Rev. Trends Biotechnol. 33, 471–479 (2015).

    Article  CAS  Google Scholar 

  113. M. Banchelli, S. Nappini, C. Montis, M. Bonini, P. Canton, D. Bertia, and P. Baglioni, “Magnetic nanoparticle clusters as actuators of ssDNA release,” Phys. Chem. Chem. Phys. 16, 10023–10031 (2014).

    Article  CAS  Google Scholar 

  114. S. Nappini, F. B. Bombelli, M. Bonini, B. Norden, and P. Baglioni, “Magnetoliposomes for controlled drug release in the presence of low-frequency magnetic field,” Soft Matter 6, 154–162 (2010).

    Article  CAS  Google Scholar 

  115. N. L. Klyachko, M. Sokolsky-Papkov, N. Pothayee, M. V. Efremova, D. A. Gulin, N. Pothayee, A. A. Kuznetsov, A. G. Majouga, J. S. Riffle, Y. I. Golovin, and A. V. Kabanov, “Changing the enzyme reaction rate in magnetic nanosuspensions by a non-heating magnetic field,” Angew. Chem. Int. Ed. 51, 12016–12019 (2012).

    Article  CAS  Google Scholar 

  116. S. Leulmi, X. Chauchet, M. Morcrette, G. Ortiz, H. Joisten, P. Sabon, T. Livache, Y. Hou, M. Carriere, S. Lequiena, and B. Dieny, “Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane,” Nanoscale 7, 15904–15914 (2015).

    Article  CAS  Google Scholar 

  117. B. Wang, C. Bienvenu, J. Mendez-Garza, P. A. Madeira, P. Vierling, and C. di Giorgio, “Necrosis of HepG2 cancer cells induced by the vibration of magnetic particles,” J. Magn. Magn. Mater. 344, 193–201 (2013).

    Article  CAS  Google Scholar 

  118. D. H. Kim, E. A. Rozhkova, I. V. Ulasov, S. D. Bader, T. Rajh, M. S. Lesniak, and V. Novosad, “Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction,” Nat. Mater. 9, 165–171 (2010).

    Article  CAS  Google Scholar 

  119. A. M. Master, P. M. Williams, Nik. Pothayee, Nip. Pothayee, R. Zhang, H. M. Vishwasrao, Y. I. Golovin, J. S. Riffle, M. Sokolsky, and A. V. Kabanov, “Remote actuation of magnetic nanoparticles for cancer cell selective treatment through cytoskeletal disruption,” Sci. Rep. 6, 33560 (2016).

    Article  CAS  Google Scholar 

  120. K. Y. Vlasova, M. A. Abakumov, I. M. Deygen, Y. I. Golovin, A. G. Majouga, A. V. Kabanov, and N. L. Klyachko, “New approach in remote control of drug release from container by means of magnetic nanoparticles and low frequency magnetic field,” in Proceedings of the 7th Baikal International Conference on Magnetic Materials. New Technologies BICMM-2016, Listvyanka, Irkutsk Region, Russia, Aug. 22–26, 2016, pp. 110–111.

    Google Scholar 

  121. E. D. Kutsenok, I. M. Deygen, P. G. Rudakovskaya, A. G. Majouga, Y. I. Golovin, E. V. Kudryashova, A. V. Kabanov, and N. L. Klyachko, “The study of the influence of low-frequency alternative magnetic field on the complexes of liposomes with magnetic nanoparticles by fluorescent methods,” in Proceedings of the 7th International Conference on Biomaterials and Nanobiomaterials: Recent Advances Safety-Toxicology and Ecology Issues Bionanotox 2016, Heraklion, Crete, Greece, May 8–13, 2016, p. 31.

    Google Scholar 

  122. I. M. Le-Deygen, E. O. Kutsenok, M. V. Efremova, P. G. Rudakovskaya, A. G. Majouga, Yu. I. Golovin, S. L. Gribanovsky, A. O. Ghigachev, I. A. Boldyrev, E. L. Vodovozova, E. V. Kudryashova, A. V. Kabanov, and N. L. Klyachko, “Extremely low magnetic field as a perspective alternative for membrane microviscosity regulation,” in Proceedings of the 8th International Conference on Biomaterials and Nanobiomaterials: Recent Advances Safety-Toxicology and Ecology Issues, Heraklion, Crete, Greece, May 7–14, 2017, p. 11–11.

    Google Scholar 

  123. M. V. Efremova, M. M. Veselov, A. V. Barulin, S. L. Gribanovsky, I. M. Le-Deygen, I. V. Uporov, E.V. Kudryashova, M. Sokolsky-Papkov, A. G. Majouga, Y. I. Golovin, A. V. Kabanov, and N. L. Klyachko, “In situ observation of chymotrypsin catalytic activity change actuated by nonheating lowfrequency magnetic field,” ACS Nano 12, 3190–3199 (2018).

    Article  CAS  Google Scholar 

  124. Yu. I. Golovin, N. L. Klyachko, M. Sokol’ski, and A. V. Kabanov, “Method for controlling biochemical reactions,” RF Patent No. 2525439, Byull. Izobret. No. 22 (2012).

    Google Scholar 

  125. Yu. I. Golovin, A. A. Samodurov, S. L. Gribanovskii, A. V. Shuklinov, N. L. Klyachko, A. G. Mazhuga, and A. V. Kabanov, “A device for studying the effect of a low-frequency magnetic field on the kinetics of biochemical processes in biological systems containing magnetic nanoparticles,” RF Patent No. 2593238, Byull. Izobret. No. 22 (2014).

    Google Scholar 

  126. Yu. I. Golovin, A. V. Shuklinov, S. L. Gribanovskii, A. O. Zhigachev, N. L. Klyachko, A. G. Mazhuga, and A. V. Kabanov, “A device for studying the effect of a combined magnetic field on the kinetics of biochemical processes in biological systems containing magnetic nanoparticles,” RF Patent No. 2593238, Byull. Izobret. No. 9 (2016).

    Google Scholar 

  127. B. Gleich and J. Weizenecker, “Tomographic imaging using the nonlinear response of magnetic particles,” Nature (London, U.K.) 435, 1114–1217 (2005).

    Article  CAS  Google Scholar 

  128. B. Gleich, Principles and Applications of Magnetic Particle Imaging (Springer, Springer, 2014).

    Book  Google Scholar 

  129. T. Knopp and T. M. Buzug, Magnetic Particle Imaging. An Introduction to Imaging Principles and Scanner Instrumentation (Springer, Berlin, 2012).

    Google Scholar 

  130. Magnetic Particle Imaging. A Novel SPIO Nanoparticle Imaging Technique, Ed. by T. M. Buzug and J. Borgert (Springer, Berlin, 2012).

    Google Scholar 

  131. N. Panagiotopoulos, R. L. Duschka, M. Ahlborg, G. Bringout, C. Debbeler, M. Graeser, C. Kaethner, K. Ludtke-Buzug, H. Medimagh, J. Stelzner, T. M. Buzug, J. Barkhausen, F. M. Vogt, and J. Haegele, “Magnetic particle imaging: current developments and future directions,” Int. J. Nanomed., No. 10, 3097–3114 (2015).

    Article  CAS  Google Scholar 

  132. E. U. Saritas, P. W. Goodwill, L. R. Croft, J. J. Konkle, K. Lu, B. Zheng, and S. M. Conolly, “Magnetic particle imaging (MPI) for NMR and MRI researchers,” J. Magn. Reson. 229, 116–126 (2013).

    Article  CAS  Google Scholar 

  133. P. W. Goodwill, E. U. Saritas, L. R. Croft, T. N. Kim, K. M. Krishnan, D. V. Schaffer, and S. M. Conolly, “X-space MPI: magnetic nanoparticles for safe medical imaging,” Adv. Mater. 24, 3870–3877 (2012).

    Article  CAS  Google Scholar 

  134. P. Vogel, M. A. Rückert, P. Klauer, W. H. Kullmann, P. M. Jakob, and V. C. Behr, “Traveling wave magnetic particle imaging,” IEEE Trans. Med. Imaging 33, 400–407 (2014).

    Article  Google Scholar 

  135. T. Knopp, T. F. Sattel, and T. M. Buzug, “Efficient magnetic gradient field generation with arbitrary axial displacement for magnetic particle imaging,” IEEE Magn. Lett. 3, 6500104 (2012).

    Article  Google Scholar 

  136. T. F. Sattel, T. Knopp, S. Biederer, B. Gleich, J. Weizenecker, J. Borgert, and T. M. Buzug, “Single-sided device for magnetic particle imaging,” J. Phys. D: Appl. Phys. 42, 022001 (2009).

    Article  CAS  Google Scholar 

  137. M. Nair, R. Guduru, P. Liang, J. Hong, V. Sagar, and S. Khizroev, “Externally controlled on-demand release of anti-hIV drug using magneto-electric nanoparticles as carriers,” Nat. Commun. 4, 1707 (2013).

    Article  CAS  Google Scholar 

  138. A. Kaushik, R. D. Jayant, R. Nikkhah-Moshaie, V. Bhardwaj, U. Roy, Z. Huang, A. Ruiz, A. Yndart, V. Atluri, N. El-Hage, K. Khalili, and M. Nair, “Magnetically guided central nervous system delivery and toxicity evaluation of magnetoelectric nanocarriers,” Sci. Rep. 6, 25309 (2016).

    Article  CAS  Google Scholar 

  139. R. Guduru, P. Liang, C. Runowicz, M. Nair, V. Atluri, and S. Khizroev, “Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells,” Sci. Rep. 3, 2953 (2013).

    Article  Google Scholar 

  140. M. L. Yarmush, A. Golberg, G. Sersa, T. Kotnik, and D. Miklavcic, “Electroporation-based technologies for medicine: principles, applications, and challenges,” Ann. Rev. Biomed. Eng. 16, 295–320 (2014).

    Article  CAS  Google Scholar 

  141. C. Jiang, R. V. Davalos, and J. C. Bischof, “A review of basic to clinical studies of irreversible electroporation therapy,” IEEE Trans. Biomed. Eng. 62, 4–12 (2015).

    Article  Google Scholar 

  142. K. Yue, R. Guduru, J. Hong, P. Liang, M. Nair, and S. Khizroev, “Magneto-electric nano-particles for non-invasive brain stimulation,” PLOS One 7, e44040 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Klyachko.

Additional information

Original Russian Text © Yu.I. Golovin, N.L. Klyachko, A.G. Majouga, S.L. Gribanovskii, D.Yu. Golovin, A.O. Zhigachev, A.V. Shuklinov, M.V. Efremova, M.M. Veselov, K.Yu. Vlasova, A.D. Usvaliev, I.M. Le-Deygen, A.V. Kabanov, 2018, published in Rossiiskie Nanotekhnologii, 2018, Vol. 13, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovin, Y.I., Klyachko, N.L., Majouga, A.G. et al. New Approaches to Nanotheranostics: Polyfunctional Magnetic Nanoparticles Activated by Non-Heating Low-Frequency Magnetic Field Control Biochemical System with Molecular Locality and Selectivity. Nanotechnol Russia 13, 215–239 (2018). https://doi.org/10.1134/S1995078018030060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078018030060

Navigation