Skip to main content
Log in

Parallel CPU- and GPU-Algorithms for Inverse Problems in Nondestructive Testing

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with developing efficient methods for solving inverse problems of ultrasonic nondestructive imaging in the framework of a scalar wave model, which describes the propagation, diffraction and refraction of longitudinal ultrasonic waves. The problem of recovering the velocity of a longitudinal wave in a solid is formulated as a coefficient inverse problem, which in this formulation is nonlinear. The proposed scalable numerical algorithms can be efficiently parallelized both on CPU- and GPU-equipped supercomputers. The efficiency of the algorithms is illustrated by applying them to model problems. The computations were performed on the “Lomonosov” supercomputer at Lomonosov Moscow State University.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Pratt, L. Huang, N. Duric, and P. Littrup, “Sound-speed and attenuation imaging of breast tissue using waveform tomography of transmission ultrasound data,” in Medical Imaging 2007: Physics of Medical Imaging, Ed. by J. Hsieh and M. J. Flynn (SPIE, San Diego, CA, 2007).

    Google Scholar 

  2. H. Gemmeke, L. Berger, M. Birk, G. Gobel, A. Menshikov, D. Tcherniakhovski, M. Zapf, and N. V. Ruiter, “Hardware setup for the next generation of 3D Ultrasound Computer Tomography,” in Proceedings of the IEEE Nuclear Science Symposuim and Medical Imaging Conference (Inst. Electrical and Electronics Eng. IEEE, 2010).

    Google Scholar 

  3. J. Wiskin, D. Borup, M. Andre, S. Johnson, J. Greenleaf, Y. Parisky, and J. Klock, “Three-dimensional nonlinear inverse scattering: Quantitative transmission algorithms, refraction corrected reflection, scanner design, and clinical results,” J. Acoust. Soc. Am. 133, 3229–3229 (2013).

    Article  Google Scholar 

  4. A. V. Goncharsky and S. Y. Romanov, “Inverse problems of ultrasound tomography in models with attenuation,” Phys.Med. Biol. 59, 1979–2004 (2014).

    Article  Google Scholar 

  5. C. Maierhofer, H.-W. Reinhardt, and G. Dobmann, Non-Destructive Evaluation of Reinforced Concrete Structures: Non-Destructive Testing Methods (Elsevier, 2010).

    Book  Google Scholar 

  6. J. Blitz and G. Simpson, Ultrasonic Methods of Non-destructive Testing (Springer, Netherlands, 1995).

    Google Scholar 

  7. K.-J. Langenberg, R. Marklein, and K. Mayer, Ultrasonic Nondestructive Testing of Materials: Theoretical Foundations (CRC, Boca Raton, FL, 2012).

    Book  Google Scholar 

  8. A. Lechleiter and J. W. Schlasche, “Identifying Laméparameters from time-dependent elastic wave measurements,” Inverse Problems Sci. Eng. 25, 2–26 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Natterer, “Possibilities and limitations of time domain wave equation imaging,” in Tomography and Inverse Transport Theory, Vol. 559 of Contemp. Math. (Am. Math. Society, Providence, 2011), pp. 151–162.

    Chapter  Google Scholar 

  10. L. Beilina and M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems (Springer, New York, 2012).

    Book  MATH  Google Scholar 

  11. A. V. Goncharsky and S. Y. Romanov, “Supercomputer technologies in inverse problems of ultrasound tomography,” Inverse Probl. 29, 075004 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. V. Goncharsky, S. Y. Romanov, and S. Y. Seryozhnikov, “Low-frequency three-dimensional ultrasonic tomography,” Dokl. Phys. 468, 268–271 (2016).

    Google Scholar 

  13. A. V. Goncharsky and S. Y. Romanov, “Iterative methods for solving coefficient inverse problems of wave tomography in models with attenuation,” Inverse Probl. 33, 025003 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. V. Goncharskii and S. Y. Romanov, “Two approaches to the solution of coefficient inverse problems for wave equations,” Comput.Math. Math. Phys. 52, 245–251 (2012).

    Article  MathSciNet  Google Scholar 

  15. A. Goncharsky, S. Romanov, and S. Seryozhnikov, “A computer simulation study of soft tissue characterization using low-frequency ultrasonic tomography,” Ultrasonics 67, 136–150 (2016).

    Article  Google Scholar 

  16. E. Lubeigt, S. Mensah, S. Rakotonarivo, J.-F. Chaix, F. Baqué, and G. Gobillot, “Topological imaging in bounded elastic media,” Ultrasonics 76, 145–153 (2017).

    Article  Google Scholar 

  17. N. Dominguez and V. Gibiat, “Non-destructive imaging using the time domain topological energy method,” Ultrasonics 50, 367–372 (2010).

    Article  Google Scholar 

  18. A. E. Bazulin, E. G. Bazulin, A. K. Vopilkin, S. A. Kokolev, S. Romashkin, and D. S. Tikhonov, “Application of 3D coherent processing in ultrasonic testing,” Russ. J. Nondestruct. 50, 92–108 (2014).

    Article  Google Scholar 

  19. E. Bachmann, X. Jacob, S. Rodriguez, and V. Gibiat, “Three-dimensional and real-time two-dimensional topological imaging using parallel computing,” J. Acoust. Soc. Am. 138, 1796 (2015).

    Article  Google Scholar 

  20. E. G. Bazulin, “On the possibility of using the maximum entropy method in ultrasonic nondestructive testing for scatterer visualization from a set of echo signals,” Acoust. Phys. 59, 210–227 (2013).

    Article  Google Scholar 

  21. V. Voevodin, S. A. Zhumatiy, S. Sobolev, A. Antonov, P. Bryzgalov, D. A. Nikitenko, K. S. Stefanov, and V. V. Voevodin, “Practice of Lomonosov supercomputer,” Open Syst. J., No. 7, 36–39 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Bazulin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazulin, E.G., Goncharsky, A.V., Romanov, S.Y. et al. Parallel CPU- and GPU-Algorithms for Inverse Problems in Nondestructive Testing. Lobachevskii J Math 39, 486–493 (2018). https://doi.org/10.1134/S1995080218040030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080218040030

Keywords and phrases

Navigation