Skip to main content
Log in

An Efficient Optimization of Hll Method for the Second Generation of Intel Xeon Phi Processor

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a new approach to vectorization of algorithms of computational fluid dynamics to simulate the dynamics of astrophysical objects is presented. A co-design of a computational model, from the formulation of equations to software tools, is described. The code performance is analyzed. A speed of 245 gigaflops on Intel Xeon Phi 7250 accelerator and 302 gigaflops on Intel Xeon Phi 7290 accelerator is reached. The code developed is used to solve a problem of interaction of different astrophysical objects such as galaxies, gas clouds, stars clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Schive, Y. Tsai, and T. Chiueh, “GAMER: a GPU-accelerated Adaptive-Mesh-Refinement Code for Astrophysics,” Astrophys. J. 186, 457–484 (2010).

    Article  Google Scholar 

  2. I. Kulikov, “GPUPEGAS: A New GPU-accelerated Hydrodynamic Code for Numerical Simulations of Interacting Galaxies,” Astrophys. J. Suppl. Ser. 214 (1), 12 (2014).

    Article  Google Scholar 

  3. I. M. Kulikov, I. G. Chernykh, A. V. Snytnikov, B. M. Glinskiy, and A. V. Tutukovm, “AstroPhi: A code for complex simulation of dynamics of astrophysical objects using hybrid supercomputers,” Comput. Phys. Commun. 186, 71–80 (2015).

    Article  Google Scholar 

  4. E. Schneider and B. Robertson, “Cholla: a new massively parallel hydrodynamics code for astrophysical simulation,” Astrophys. J. Suppl. Ser. 217 (2), 24 (2015).

    Article  Google Scholar 

  5. P. Benitez-Llambay and F. Masset, “FARGO3D: a new GPU-oriented MHD code,” Astrophys. J. Suppl. Ser. 223 (1), 11 (2016).

    Article  Google Scholar 

  6. J. Pekkilaa, M. Vaisalab, M. Kapylac, P. Kapylad, and O. Anjum, “Methods for compressible fluid simulation on GPUs using high-order finite differences,” Comput. Phys. Commun. 217, 11–22 (2017).

    Article  MathSciNet  Google Scholar 

  7. M. Griffiths, V. Fedun, and R. Erdelyi, “A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG,” J. Astrophys. Astron. 36 (1), 197–223 (2015).

    Article  Google Scholar 

  8. P. J. Mendygral, N. Radcliffe, K. Kandalla, D. Porter, B. J. O‘Neill, C. Nolting, P. Edmon, J. M. F. Donnert, and T. W. Jones, “WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code,” Astrophys. J. Suppl. Ser. 228 (2), 23 (2017).

    Article  Google Scholar 

  9. I. Surmin, S. I. Bastrakov, E. S. Efimenko, A. A. Gonoskov, A. V. Korzhimanov, and I. B. Meyerov, “Particlein-Cell laser-plasma simulation on Xeon Phi coprocessors,” Comput. Phys. Commun. 202, 204–210 (2016).

    Article  Google Scholar 

  10. P. Needham, A. Bhuiyan, and E. Walker, “Extension of the AMBER molecular dynamics software to Intel‘s Many Integrated Core (MIC) architecture,” Comput. Phys. Commun. 201, 95–105 (2016).

    Article  Google Scholar 

  11. W. M. Brown, J.-M. Y. Carrillo, N. Gavhane, and F. M. Thakkar, “Optimizing legacy molecular dynamics software with directive-based offload,” Comput. Phys. Commun. 195, 95–101 (2015).

    Article  Google Scholar 

  12. M. Bernaschia, M. Bissona, and F. Salvadore, “Multi-Kepler GPU vs. multi-Intel MIC for spin systems simulations,” Comput. Phys. Commun. 185, 2495–2503 (2014).

    Article  Google Scholar 

  13. D. Nishiura, M. Furuichi, and H. Sakaguchi, “Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing,” Comput. Phys. Commun. 194, 18–32 (2015).

    Article  Google Scholar 

  14. I. Hadade and L. di Mare, “Modern multicore and manycore architectures: Modelling, optimisation and benchmarking a multiblock CFD code,” Comput. Phys. Commun. 205, 32–47 (2016).

    Article  MathSciNet  Google Scholar 

  15. I. Kulikov, I. Chernykh, and A. Tutukov, “A New Hydrodynamic Model for Numerical Simulation of Interacting Galaxies on Intel Xeon Phi Supercomputers,” J. Phys.: Conf. Ser. 719, 012006 (2016).

    Google Scholar 

  16. B. Glinsky, I. Kulikov, and I. Chernykh, “The Co-design of Astrophysical Code for Massively Parallel Supercomputers,” in Algorithms and Architectures for Parallel Processing: ICA3PP 2016, Ed. by J. Carretero et. al., Lecture Notes in Computer Science (Springer, Cham, 2017), Vol. 10049, pp. 342–353.

    Google Scholar 

  17. Capabilities of IntelBR AVX-512 in IntelBR XeonBR Scalable Processors (Skylake). https://colfaxresearch.com/skl-avx512/.

  18. D. Balsara and D. Spicer, “Maintaining Pressure Positivity in Magnetohydrodynamic Simulations,” J. Comput. Phys. 148, 133–148 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Ryu, J. Ostriker, H. Kang, and R. Cen, “A cosmological hydrodynamic code based on the total variation diminishing scheme,” Astrophys. J. 414, 1–19 (1993).

    Article  Google Scholar 

  20. V. Springel and L. Hernquist, “Cosmological smoothed particle hydrodynamics simulations: the entropy equation,” Mon. Not. Roy. Astron. Soc. 333, 649–664 (2002).

    Article  Google Scholar 

  21. S. Godunov and I. Kulikov, “Computation of Discontinuous Solutions of Fluid Dynamics Equations with Entropy Nondecrease Guarantee,” Comput.Math. Math. Phys. 54, 1012–1024 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  22. I. Kulikov and E. Vorobyov, “Using the PPMLapproach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows,” J. Comput. Phys. 317, 318–346 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Harten and P. D. Lax, “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws,” SIAM J. Appl.Math. 25, 35–61 (1983).

    MathSciNet  MATH  Google Scholar 

  24. U. Ziegler, “Self-gravitational adaptive mesh magnetohydrodynamics with the NIRVANA code,” Astron. Astrophys. 435, 385–395 (2005).

    Article  Google Scholar 

  25. R. Teyssier, “Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES,” Astron. Astrophys. 385, 337–364 (2002).

    Article  Google Scholar 

  26. J. Stone, T. A. Gardiner, P. Teuben, J. F. Hawley, and J. B. Simon, “Athena: A New Code for Astrophysical MHD,” Astrophys. J. Suppl. Ser. 178, 137–177 (2008).

    Article  Google Scholar 

  27. A. Mignone, G. Bodo, S. Massaglia, T. Matsakos, O. Tesileanu, C. Zanni, and A. Ferrari, “PLUTO: a Numerical Code for Computational Astrophysics,” Astrophys. J. Suppl. Ser. 170, 228–242 (2007).

    Article  Google Scholar 

  28. F. Lora-Clavijo, A. Cruz-Osorio, and F. Guzman, “CAFE: a new relativistic MHD code,” Astrophys. J. Suppl. Ser. 218 (2), 24 (2015).

    Article  Google Scholar 

  29. B. Van der Holst, “CRASH: a block-adaptive-mesh code for radiative shock hydrodynamics— implementation and verification,” Astrophys. J. Suppl. Ser. 194 (2), 23 (2011).

    Article  MathSciNet  Google Scholar 

  30. R. Kappeli, S. Whitehouse, S. Scheidegger, U.-L. Pen, and M. Liebendorfer, “FISH: a three-dimensional parallel magnetohydrodynamics code for astrophysical applications,” Astrophys. J. Suppl. Ser. 195 (2), 20 (2011).

    Article  Google Scholar 

  31. C. Cardall, R. Budiardja, E. Endeve, and A. Mezzacappa, “GenASiS: general astrophysical simulation system. I. refinable mesh and nonrelativistic hydrodynamics,” Astrophys. J. Suppl. Ser. 210 (2), 17 (2014).

    Article  Google Scholar 

  32. Y. L. Jaffe, R. Smith, G. Candlish, B. M. Poggianti, Y-K. Sheen, and M. A. W. Verheijen, “BUDHIES II: A phase-space view of HI gas stripping and star-formation quenching in cluster galaxies,” Mon. Not. Roy. Astron. Soc. 448, 1715–1728 (2015).

    Article  Google Scholar 

  33. B. Vollmer, V. Cayatte, C. Balkowski, and W. J. Duschl, “Ram pressure stripping and galaxy orbits: The case of the Virgo cluster,” Astrophys. J. 561, 708–726 (2001).

    Article  Google Scholar 

  34. V. Cayatte, C. Kotanyi, C. Balkowski, and J. H. van Gorkom, “A very large array survey of neutral hydrogen in Virgo Cluster spirals. 3: Surface density profiles of the gas,” Astron. J. 107 (3), 1003–1017 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Kulikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, I.M., Chernykh, I.G., Glinskiy, B.M. et al. An Efficient Optimization of Hll Method for the Second Generation of Intel Xeon Phi Processor. Lobachevskii J Math 39, 543–551 (2018). https://doi.org/10.1134/S1995080218040091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080218040091

Keywords and phrases

Navigation