Skip to main content
Log in

Sorption and Biodegradation of Octyl- and Nonylphenols by the Cyanobacterium Planktothrix agardhii (Gomont) Anagn. & Komárek

  • AQUATIC TOXICOLOGY
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The removal of endocrine-disrupting xenobiotics, technical nonylphenol (NP) and 4-tert-octylphenol (OP), from aquatic environment by the cyanobacterium Planktothrix agardhii has been studied. It is shown that nonyl- and octylphenols are removed from aqueous medium in the presence of the cyanobacterium P. agardhii mainly via abiotic pathways—photolysis and hydrolysis—and biodegradation by cyanobacterial cells rather than by adsorption and accumulation in the cells. P. agardhii has a higher destructive and sorption ability for nonylphenol compared to octylphenol. The results indicate the possibility of self-purification of water bodies contaminated with alkylphenols with the participation of the mass species of cyanobacteria Planktothrix agardhii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Burakovskii, A.I., Piven’, N.V., and Lukhverchik, L.N., Nonylphenol as a damaging factor of the regulatory systems of the body, Tr. Belorus. Gos. Univ., 2010, vol. 5, pt. 1, pp. 243–253.

    Google Scholar 

  2. Ahel, M., McEvoy, J., and Giger, W., Bioaccumulation of the lipophilic metabolites of non-ionic surfactants in freshwater organisms, Environ. Pollut., 1993, vol. 79, pp. 243–248.

    Article  CAS  PubMed  Google Scholar 

  3. Baptista, M.S., Stoichev, T., Basto, M.C.P., et al., Fate and effects of octylphenol in a Microcystis aeruginosa culture medium, Aquat. Toxicol., 2009, vol. 92, no. 2, pp. 59–64. https://doi.org/10.1016/j.aquatox.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  4. Bergé, A., Gasperi, J., Rocher, V., et al., Phthalates and alkylphenols in industrial and domestic effluents: case of Paris conurbation (France), Sci. Total Environ., 2014, vols. 488–489, pp. 26–35. https://doi.org/10.1016/j.scitotenv.2014.04.081

    Article  CAS  PubMed  Google Scholar 

  5. Brooke, D., Johnson, I., Mitchell, R., and Watts, C., Environmental Risk Evaluation Report: 4-tert-Octylphenol, Env. Agency Publ., 2005.

  6. Chekroun, K.B., Sanchez, E., and Baghou, M., The role of algae in bioremediation of organic pollutant, Int. Res. J. Publ. Environ. Health, 2014, vol. 1, no. 2, pp. 19–32.

    Google Scholar 

  7. Correa-Reyes, G., Viana, M.T., Marquez-Rocha, F.J., et al., Nonylphenol algal bioaccumulation and its effect through the trophic chain, Chemosphere, 2007, vol. 68, pp. 662–670. https://doi.org/10.1016/j.chemosphere.2007.02.030

    Article  CAS  PubMed  Google Scholar 

  8. David, A., Fenet, H., and Gomez, E., Alkylphenols in marine environments: distribution monitoring strategies and detection considerations, Mar. Pollut. Bull., 2009, vol. 58, pp. 953–960. https://doi.org/10.1016/j.marpolbul.2009.04.021

    Article  CAS  PubMed  Google Scholar 

  9. Dulov, A., Dulova, N., and Trapid, M., Photochemical degradation of nonylphenol in aqueous solution: the impact of pH and hydroxyl radical promoters, J. Environ. Sci, 2013, vol. 25, no. 7, pp. 1326–1330.

    Article  CAS  Google Scholar 

  10. Düring, R.A., Krahe, S., and Gäth, S., Sorption behavior of nonylphenol in terrestrial soils, Environ. Sci. Technol., 2002, vol. 36, no. 19, pp. 4052–4057. https://doi.org/10.1021/es0103389

    Article  CAS  PubMed  Google Scholar 

  11. Ekelund, R., Bergman, A., Granmo, A., and Berggren, M., Bioaccumulation of 4-nonylphenol in marine animals: a re-evalution, Environ. Pollut., 1990, vol. 64, pp. 107–120.

    Article  CAS  PubMed  Google Scholar 

  12. Gao, Q.T. and Tam, N.F.Y., Growth, photosynthesis and antioxidant responses of two microalgal species, Chlorella vulgaris and Selenastrum capricornutum, to nonylphenol stress, Chemosphere, 2011, vol. 82, no. 3, pp. 346–354. https://doi.org/10.1016/j.chemosphere.2010.10.010

    Article  CAS  PubMed  Google Scholar 

  13. Gao, Q.T., Wong, Y.S., and Tam, N.F.Y., Removal and biodegradation of nonylphenol by different Chlorella species, Mar. Pollut. Bull., 2011, vol. 63, pp. 445–451. https://doi.org/10.1016/j.marpolbul.2011.03.030

    Article  CAS  PubMed  Google Scholar 

  14. He, N., Sun, X., Zhong, Y., et al., Removal and biodegradation of nonylphenol by four freshwater microalgae, Int. J. Environ. Res. Publ. Health, 2016, vol. 13, pp. 1239–1253. https://doi.org/10.3390/ijerph13121239

    Article  CAS  Google Scholar 

  15. Jonsson, B., Risk assessment on butylphenol, octylphenol and nonylphenol, and estimated human exposure of alkylphenols from Swedish fish, Ekotoxikologiska Avdelningen, Uppsala: Uppsala Univ., 2006, vol. 109.

    Google Scholar 

  16. Knez, J., Endocrine-disrupting chemicals and male reproductive health, Int. J. Reprod. Biomed., 2013, no. 26, pp. 440–448. https://doi.org/10.1016/j.rbmo.2013.02.005

  17. Laht, M. and Volkov, E., Identification of Sources and Estimation of Inputs/Impacts on the Baltic Sea. Cohiba Project “Control of Hazardous Substances in the Baltic Sea Region,” Summary Report, Estonia: Tallinn, 2011.

  18. Laws, S.C., Carey, S.A., Ferrell, J.M., et al., Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats, Toxicol. Sci., 2000, vol. 54, pp. 156–167.

    Article  Google Scholar 

  19. Liu, Y., Guan, Y., Gao, Q., et al., Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incepta, Chemosphere, 2010, vol. 80, pp. 592–599. https://doi.org/10.1016/j.chemosphere.2010.03.042

  20. Liu, Y., Dai, X., and Wei, J., Toxicity of the nonylphenol and its biodegradation by the alga Cyclotella caspia, J. Environ. Sci., 2013, vol. 25, no. 8, pp. 1662–1671. https://doi.org/10.1016/S1001-0742(12)60182-X

    Article  CAS  Google Scholar 

  21. Medvedeva, N.G., Zinovyeva, S.V., Zaytseva, T.B., et al., Toxicity of 4-tert-octylphenol and its biodegradation by microalgae of the genus Microcystis (Cyanoprocaryota), Hydrobiol. J., 2018, vol. 54, no. 3, pp. 89–102. https://doi.org/10.1615/HydrobJ.v54.i3.90

    Article  Google Scholar 

  22. Peng, F.Q., Ying, G.G., Yang, B., et al., Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): transformation kinetics and products identification. Chemosphere, 2014, vol. 95, pp. 581–589. https://doi.org/10.1016/j.chemosphere.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  23. Puy-Azurmendi, E., Ortiz-Zarragoitia, M., Villagrasa, M., et al., Endocrine disruption in thicklip grey mullet (Chelon labrosus) from the Urdaibai Biosphere Reserve (Bay of Biscay, Southwestern Europe), Sci. Total Environ., 2013, vol. 443, pp. 233–244. https://doi.org/10.1016/j.scitotenv.2012.10.078

    Article  CAS  PubMed  Google Scholar 

  24. Qian, H., Pan, X., Shi, S., et al., Effect of nonylphenol on response of physiology and photosynthesis-related gene transcription of Chlorella vulgaris, Environ. Monit. Assess., 2011, vol. 182, pp. 61– 69. https://doi.org/10.1007/s10661-010-1858-9

    Article  CAS  PubMed  Google Scholar 

  25. Ribeiro, A.R., Nunes, O.C., Pereira, M.F.R., and Silva, A.M.T., An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched directive 2013/39/EU, Environ. Int., 2015, vol. 75, pp. 33–51. https://doi.org/10.1016/j.envint.2014.10.027

    Article  CAS  PubMed  Google Scholar 

  26. Rippka, R., Deruelles, J., Waterbury, J.B., et al., Genetic assignments, strain histories and properties of pure cultures of cyanobacteria, J. Gen. Microbiol., 1979, vol. 111, pp. 1–61. https://doi.org/10.1099/00221287-111-1-1

    Article  Google Scholar 

  27. Servos, M.R., Review of the aquatic toxicity, estrogenic responses and bioaccumulation of alkylphenols and alkylphenols polyethoxylates, Water Qual. Res. J. Can., 1999, vol. 34, pp. 123–177.

    Article  CAS  Google Scholar 

  28. Soares, A., Guieysse, B., Jefferson, B., et al., Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters, Environ. Int., 2008, vol. 34, pp. 1033–1049. https://doi.org/10.1016/j.envint.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  29. Sole, M., Lopez de Alda, M.J., Castillo, M., et al., Estrogenicity determination in sewage treatment plants and surface waters from Catalonian area (NE Spain), Environ. Sci. Technol., 2000, vol. 34, no. 24, pp. 5076–5083. https://doi.org/10.1021/es991335n

    Article  CAS  Google Scholar 

  30. Sun, H.-W., Hu, H.-W., Wang, L., et al., The bioconcentration and degradation of nonylphenol and nonylphenol polyethoxylates by Chlorella vulgaris, Int. J. Sci., 2014, vol. 1255–1270. https://doi.org/10.3390/ijms15011255

  31. Vazquez-Duhalt, R., Marquez-Rocha, F., Ponce, E., et al., Nonylphenol., an integrated vision of a pollutant. Scientific review, Appl. Ecol. Environ. Res., 2005, vol. 4, pp. 1–25. https://doi.org/10.15666/aeer/0401_001025

    Article  Google Scholar 

  32. Wang, J. and Xie, P., Antioxidant enzyme activities of Microcystis aeruginosa in response to nonylphenols and degradation of nonylphenols by M. aeruginosa, Environ. Geochem. Health, 2007, vol. 29, pp. 375–383. https://doi.org/10.1007/s10653-007-9081-5

    Article  CAS  PubMed  Google Scholar 

  33. Wang, S., Wang, X., Poon, K., et al., Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa, Chemosphere, 2013, vol. 92, no. 11, pp. 1498–1505. https://doi.org/10.1016/j.chemosphere.2013.03.067

    Article  CAS  PubMed  Google Scholar 

  34. Wang, J., Xie, P., and Guo, N., Effects of nonylphenol on the growth and microcystin production of Microcystis strains, Environ. Res., 2007, vol. 103, no. 1, pp. 70–78. https://doi.org/10.1016/j.envres.2006.05.013

    Article  CAS  PubMed  Google Scholar 

  35. Zaytseva, T.B., Milman, B.L., Lugovkina, N.V., et al., Effect of octyl- and nonylphenols on the growth, photosynthetic activity and toxin production of cyanobacteria Planktothrix agardhii (Gom.) Anagnostidis et Komarek, Hydrobiol. J., 2015, vol. 51, no. 6, pp. 36–47. https://doi.org/10.1615/HydrobJ.v51.i6.40

  36. Zaytseva, T.B., Medvedeva, N.G., and Mamontova, V.N., Peculiarities of the effect of octyl- and nonylphenols on the growth and development of microalgae, Inland Water Biol., 2015, vol. 8, no. 4, pp. 406–413. https://doi.org/10.1134/S1995082915040161

    Article  Google Scholar 

  37. Zhou, G-J., Peng, Fu-Q., Yang, B., and Ying, G-G., Cellular responses and bioremoval of nonylphenol and octylphenol in the freshwater green microalgae Scenedesmus obliquus, Ecotoxicol. Environ. Safety, 2013, vol. 87, pp. 10–16. https://doi.org/10.1016/j.ecoenv.2012.10.002

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. B. Zaytseva.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaytseva, T.B., Medvedeva, N.G. Sorption and Biodegradation of Octyl- and Nonylphenols by the Cyanobacterium Planktothrix agardhii (Gomont) Anagn. & Komárek. Inland Water Biol 12, 337–345 (2019). https://doi.org/10.1134/S1995082919030192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082919030192

Keywords:

Navigation