Skip to main content
Log in

Solving the 2D Maxwell equations by a Laguerre spectral method

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

Abstract

A spectral method for solving the 2D Maxwell equations with relaxation of electromagnetic parameters is presented. The method is based on an expansion of the solution in terms of Laguerre functions in time. The operation of convolution of functions, which is part of the formulas describing the relaxation processes, is reduced to a sum of products of the harmonics. The Maxwell equations transform to a system of linear algebraic equations for the solution harmonics. In the algorithm, an inner parameter of the Laguerre transformis used. With large values of this parameter, the solution is shifted to high harmonics. This is done to simplify the numerical algorithm and to increase the efficiency of the problem solution. Results of a comparison of the Laguerre method and a finite-difference method in accuracy both for a 2D medium structure and a layered medium are given. Results of a comparison of the spectral and finite-difference methods in efficiency for axial and plane geometries of the problem are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landau, L.D. and Lifshits, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Nauka, 1982.

    Google Scholar 

  2. Elektrorazvedka. Spravochnik geofizika (Electrical Prospecting. A Handbook of Geohysicist), Tarkhov, A.G., Ed., Moscow: Nedra, 1980.

    Google Scholar 

  3. Epov, M.I., Mironov, V.L., Komarov, S.A., and Muzalevskii, K.V., Electromagnetic Sounding of a Fluid-Saturated Layered Collector by Nanosecond Pulses, Geol. Geofiz., 2007, vol. 48, no. 12, pp. 1357–1365.

    Google Scholar 

  4. Wang, T. and Signorelli, J., Finite-Difference Modeling of Electromagnetic Tool Response for Logging while Drilling, Geophysics, 2004, vol. 69, pp. 152–160.

    Article  Google Scholar 

  5. Wu, X. and Habashy, T.M., Influence of Steel Casings on Electromagnetic Signals, Geophysics, 1994, vol. 59, pp. 378–390.

    Article  Google Scholar 

  6. Lee, K.H., Kim, H.J., and Uchida, T., Electromagnetic Fields in a Steel-Cased Borehole, Geophys. Prosp., 2005, vol. 53, pp. 13–21.

    Article  Google Scholar 

  7. Kashkin, V.B. and Sukhinin, F.I., Distantsionnoe zondirovanie zemli iz kosmosa (Remote Sensing of the Earth from Space), Moscow: Logos, 2001.

    Google Scholar 

  8. Turner, G. and Siggins, A.F., Constant Q Attenuation of Subsurface Radar Pulses, Geophysics, 1994, vol. 59, pp. 1192–1200.

    Article  Google Scholar 

  9. Bergmann, T., Robertsson, J.O., and Holliger, K., A Simplified Lax-Wendroff Correction for Staggered-Grid FDTD Modeling of Electromagnetic Wave in Frequency-Dependent Media, Geophysics, 1999, vol. 64, pp. 1369–1377.

    Article  Google Scholar 

  10. Konyukh, G.V. and Mikhailenko, B.G., Use of the Integral Laguerre Transform in Solving the Dynamic Problems of Seismics, Tr. Inst. Vych.Mat. Mat. Geofiz. SO RAN, 1998, no. 5, pp. 107–112.

  11. Mastryukov, A.F. and Mikhailenko, B.G., Numerical Modeling of Electromagnetic Wave Propagation in Inhomogeneous Media with Attenuation by the Spectral Laguerre Transform, Geol. Geofiz., 2003, vol. 44, no. 10, pp. 1060–1069.

    Google Scholar 

  12. Mastryukov, A.F. and Mikhailenko, B.G., Modeling of Electromagnetic Wave Propagation in Relaxation Media by the Spectral Laguerre Transform, Geol. Geofiz., 2006, vol. 47, no. 3, pp. 397–407.

    Google Scholar 

  13. Mastryukov, A.F. and Mikhailenko, B.G., Numerical Solution of Maxwell’s Equations in AnisotropicMedia by the Laguerre Transform, Geol. Geofiz., 2008, vol. 49, no. 8, pp. 397–407.

    Google Scholar 

  14. Spravochnik po spetsialnym funktsiyam (Handbook of Mathematical Functions), Abramovitz, M. and Stegun, I., Eds., Moscow: Nauka, 1979.

    Google Scholar 

  15. Fornberg, B. and Ghrist, M., Spatial Finite Difference Approximation for Wave-Type Equations, SIAM J. Num. Anal., 1999, vol. 37, pp. 105–130.

    Article  MATH  MathSciNet  Google Scholar 

  16. Paige, C.C. and Saunders, M.A., LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares, ACM Trans. Math. Soft., 1982, vol. 8, pp. 43–71.

    Article  MATH  MathSciNet  Google Scholar 

  17. Golub, G. and Van Loan, Ch., Matrichnye vychisleniya (Matrix Computations), Moscow: Mir, 1999.

    Google Scholar 

  18. Sneddon, I., Preobrazovanie Fur’e (Fourier Transform), Moscow: IL, 1955.

    Google Scholar 

  19. Ghrist, M., Fornberg, B., and Driscoll, T.A., Staggered Time Integrator for Wave Equations, SIAM J. Num. Anal., 2000, vol. 38, pp. 718–741.

    Article  MATH  MathSciNet  Google Scholar 

  20. Fizicheskie svoistva gornykh porod. Spravochnik geofizika (Physical Properties of Rocks and Minerals: A Handbook of Geophysicist), Dortman, N.B., Ed., Moscow: Nedra, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Mastryukov.

Additional information

Original Russian Text © A.F. Mastryukov, B.G. Mikhailenko, 2010, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2010, Vol. 13, No. 2, pp. 143–160.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mastryukov, A.F., Mikhailenko, B.G. Solving the 2D Maxwell equations by a Laguerre spectral method. Numer. Analys. Appl. 3, 118–132 (2010). https://doi.org/10.1134/S1995423910020023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423910020023

Key words

Navigation