Skip to main content
Log in

p-Adic physics, non-well-founded reality and unconventional computing

  • Research Articles
  • Published:
P-Adic Numbers, Ultrametric Analysis, and Applications Aims and scope Submit manuscript

Abstract

We consider perspectives of application of coinductive and corecursive methods of non-well-founded mathematics to modern physics, especially to adelic and p-adic quantum mechanics. We also survey perspectives of relationship between modern physics and unconventional computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ackermann, Data, Instruments and Theory (Princeton Univ. Press, Princeton, 1985).

    Google Scholar 

  2. P. Aczel, Non-Well-Founded Sets (Stanford, 1988).

  3. A. Adamatzky, Computing in Nonlinear Media and Automata Collectives (Inst. Phys. Publishing, 2001).

  4. A. Adamatzky, B. De Lacy Costello and T. Asai, Reaction-Diffusion Computers (Elsevier, 2005).

  5. S. Albeverio, A. Yu. Khrennikov and P. Kloeden, “Memory retrieval as a p-adic dynamical system” Biosystems 49, 105–115 (1999).

    Article  Google Scholar 

  6. F. Bartels, “Generalized coinduction” Math. Structures Comput. Sci. 13, 321–348 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Barwise and J. Etchemendy, The Liar (Oxford UP, New York, 1987).

    MATH  Google Scholar 

  8. J. Barwise and L. Moss, Vicious Circles (Stanford, 1996).

  9. J. Barwise and L. Moss, Hypersets (Springer Verlag, New York, 1992).

    Google Scholar 

  10. J. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge Univ.Press, Cambridge, 1987).

    Google Scholar 

  11. E. Beltrametti and G. Cassinelli, “Quantum mechanics and p-adic numbers,” Found. of Physics 2, 1–7 (1972).

    Article  MathSciNet  Google Scholar 

  12. M. Burgin, Super-Recursive Algorithms, Monographs in Computer Science (Springer, 2005).

  13. B. J. Copeland, ”Hypercomputation,” Minds and Machines 12, 461–502 (2002).

    Article  MATH  Google Scholar 

  14. P. A. M. Dirac, “The physical interpretation of quantum mechanics,” Proc. Roy. Soc. London A 180, 1–39 (1942).

    Article  MathSciNet  Google Scholar 

  15. B. Dragovic, ”On signature change in p-adic space-time,” Mod. Phys. Lett. 6, 2301–2307 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Eberbach and P. Wegner, “Beyond TuringMachines,” Bulletin of the EATCS 81, 279–304 (2003).

    MathSciNet  MATH  Google Scholar 

  17. A. Hurd and P. A. Loeb, An Introduction to Nonstandard Real Analysis (Academic Press, New York, 1980).

    Google Scholar 

  18. P. Galison, How Experiments End (Univ. of Chicago Press, Chicago, 1987).

    Google Scholar 

  19. R. Gandy, “Church’s Thesis and Principles for Mechanisms,” eds. J. Barwise, H. J. Keisler and K. Kunen, The Kleene Symposium (North-Holland, Amsterdam).

  20. D. Goldin, S. Smolka and P. Wegner, (eds.), Interactive Computation: the New Paradigm (Springer, 2006).

  21. A. D. Gordon, “Bisimilarity as a theory of functional programming,” Theor. Comput. Sci. 228, 5–47 (1999).

    Article  MATH  Google Scholar 

  22. B. Jacobs and J. Rutten, “A tutorial on (co)algebras and (co)induction” EATCS Bulletin 62, 222–259 (1997).

    MATH  Google Scholar 

  23. A. Yu. Khrennikov, “p-Adic quantum mechanics with p-adic valued functions,” J. Math. Phys. 32(4), 932–937 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Yu. Khrennikov, p-adic valued distributions in mathematical physics (Kluwer Acad. Publishers, Dordrecht, 1994).

    MATH  Google Scholar 

  25. A. Yu. Khrennikov, Interpretations of Probability (VSP Int. Sc. Publishers, Utrecht/Tokyo, 1999).

    MATH  Google Scholar 

  26. A. Yu. Khrennikov, Non-Archimedian Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer Acad. Publishers, Dordrecht, 1997).

    Google Scholar 

  27. A. Yu. Khrennikov, Information Dynamics in Cognitive, Psychological and Anomalous Phenomena (Kluwer Acad. Publishers, Dordrecht, 2004).

    MATH  Google Scholar 

  28. A. Yu. Khrennikov, Modeling of Processes of Thinking in p-Adic Coordinates (Nauka, Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  29. A. Yu. Khrennikov and A. Schumann, “Logical approach to p-adic probabilities,” Bull. of the Section of Logic 35(1), 49–57 (2006).

    MathSciNet  MATH  Google Scholar 

  30. N. Koblitz, p-Adic Numbers, p-Adic Analysis and Zeta Functions (Springer-Verlag, 1984).

  31. A. N. Kolmogorov, “Grundbegriffe der Wahrscheinlichkeitsrechnung,” Ergebnisse der Mathematik 2, 1–61 (1933).

    Google Scholar 

  32. A. A. Markov, Theory of Algorithms (Academy of Sciences of the USSR, Moscow, 1954) [in Russian].

    Google Scholar 

  33. K. Morita and K. Imai, Logical Universality and Self-Reproduction in Reversible Cellular Automata (ICES, 1996).

  34. L. Moss, “Parametric Corecursion,” Theor. Comput. Sci 260, 139–164 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  35. I. Newton, TheMathematical Principles of Natural Philosophy.

  36. D. Pavlović and M. H. Escardó, “Calculus in coinductive form,” in Proc. 13th Annual IEEE Symposium on Logic in Computer Science, pp. 408–417 (1998).

  37. A. Robinson, Non-Standard Analysis (North-Holland Publ. Co., 1966).

  38. A. Schumann, “Non-Archimedean valued sequent logic,” in Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’06), pp. 89–92 (IEEE Press, 2006).

  39. A. Schumann, “p-Adic multiple-validity and p-adic valued logical calculi,” J. Multiple-Valued Logic and Soft Computing 13(1–2), 29–60 (2007).

    MathSciNet  MATH  Google Scholar 

  40. A. Schumann, “Non-Archimedean valued predicate logic,” Bull. of the Section of Logic 36(1–2), 67–78 (2007).

    MathSciNet  Google Scholar 

  41. A. Schumann, “Non-Archimedean fuzzy reasoning,” in Fuzzy Systems and Knowledge Discovery (FSKD’07), Vol. 1, pp. 2–6 (IEEE Computer Soc. Press, 2007).

    Article  Google Scholar 

  42. A. Schumann, “Non-Archimedean fuzzy and probability logic,” J. Applied Non-Classical Logics 18/1, 29–48 (2008).

    Article  MathSciNet  Google Scholar 

  43. A. Schumann, “Non-well-founded probabilities on streams,” SMPS’08, (2008), to appear.

  44. A. A. Siddiqui, M. Akram and E. U. Haque, “Equivalence of completeness axiom and principle of continuous induction,” Science International 13(3), 211–213 (2001).

    Google Scholar 

  45. S. Stepney et al.,“Journeys in non-classical computation I: A grand challenge for computing research,” Parallel Algorithms Appl. 20(1), 5–19 (2005).

    MathSciNet  MATH  Google Scholar 

  46. S. Stepney et al., “Journeys in non-classical computation II: initial journeys and waypoints,” Parallel Algorithms Appl. 21(2), 97–125 (2006).

    MathSciNet  Google Scholar 

  47. E. Thiran, D. Verstegen and J. Weyers, “p-Adic dynamics,” J. Stat. Phys. 54, 893–913 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  48. V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific, Singapore, 1994).

    Google Scholar 

  49. V. S. Vladimirov and I. V. Volovich, “p-Adic quantum mechanics,” Commun. Math. Phys. 123, 659–676 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  50. I. V. Volovich, “p-Adic string,” Class. Quant. Grav. 4, 83–87 (1987).

    Article  MathSciNet  Google Scholar 

  51. P. Wegner, “Why interaction is more powerful than algorithms,” Commun. ACM 40(5), 89–91 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Khrennikov.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khrennikov, A., Schumann, A. p-Adic physics, non-well-founded reality and unconventional computing. P-Adic Num Ultrametr Anal Appl 1, 297–306 (2009). https://doi.org/10.1134/S2070046609040037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046609040037

Key words

Navigation