Skip to main content
Log in

On accuracy of mathematical languages used to deal with the Riemann zeta function and the Dirichlet eta function

  • Research Articles
  • Published:
P-Adic Numbers, Ultrametric Analysis, and Applications Aims and scope Submit manuscript

Abstract

The Riemann Hypothesis has been of central interest to mathematicians for a long time and many unsuccessful attempts have been made to either prove or disprove it. Since the Riemann zeta function is defined as a sum of the infinite number of items, in this paper, we look at the Riemann Hypothesis using a new applied approach to infinity allowing one to easily execute numerical computations with various infinite and infinitesimal numbers in accordance with the principle ‘The part is less than the whole’ observed in the physical world around us. The new approach allows one to work with functions and derivatives that can assume not only finite but also infinite and infinitesimal values and this possibility is used to study properties of the Riemann zeta function and the Dirichlet eta function. A new computational approach allowing one to evaluate these functions at certain points is proposed. Numerical examples are given. It is emphasized that different mathematical languages can be used to describe mathematical objects with different accuracies. The traditional and the new approaches are compared with respect to their application to the Riemann zeta function and the Dirichlet eta function. The accuracy of the obtained results is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Balazard and O. V. Castaë∈n, “Sur l’infimum des parties réelles des zéros des sommes partielles de la fonction zêta de Riemann,” http://front.math.ucdavis.edu/0902.0923, (2009).

  2. W. H. Beyer, ed., CRC Standard Mathematical Tables (CRC Press, West Palm Beach, Fla., 1978).

    Google Scholar 

  3. P. Borwein, G. Fee, R. Ferguson and A. van der Waal, “Zeros of partial summs of the Riemann zeta function,” Experiment.Math. 16(1), 21–40 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Brian Conrey, “The Riemann hypothesis,” Notices Amer.Math. Soc. 50(3), 341–353 (2003).

    MathSciNet  MATH  Google Scholar 

  5. S. De Cosmis and R. De Leone, “The use of grossone in Mathematical Programming and Operations Research,” submitted.

  6. L. D’Alotto, “Cellular automata using infinite computations,” submitted.

  7. H.M. Edwards, Riemann’s Zeta Function (Dover Publ., New York, 2001).

    MATH  Google Scholar 

  8. L. Euler, “De seriebus quibusdam considerationes,” Commentarii academiae scientarium Petropolitanae 12, 53–96; Opera omnia, Series prima XIV, pp. 407–461 (1740).

    Google Scholar 

  9. L. Euler, “De seriebus divergentibus,” Novi commentarii academiae scientarium Petropolitanae 5, 205–237; Opera omnia, Series prima XIV, pp. 585–617 (1754–1755).

    Google Scholar 

  10. L. Euler, “Remarques sur un beau rapport entre les series des puissances tant directes que reciproques,” Memoires de lacademie des sciences de Berlin 17, 83–106; Opera omnia, Series primaXV, pp. 70–90 (1761).

    Google Scholar 

  11. L. Euler, An Introduction to the Analysis of the Infinite, translated by John D. Blanton (Springer-Verlag, New York, 1988).

    Google Scholar 

  12. P. Gordon, “Numerical cognition without words: Evidence from Amazonia,” Science 306, 496–499 (2004).

    Article  Google Scholar 

  13. K. Knopp, Theory and Application of Infinite Series (Dover Publ., New York, 1990).

    Google Scholar 

  14. M. Margenstern, “An application of grossone to the study of a family of tilings of the hyperbolic plane,” Appl. Math. Comp., to appear.

  15. Ya. D. Sergeyev, Arithmetic of Infinity (Edizioni Orizzonti Meridionali, CS, 2003).

    MATH  Google Scholar 

  16. Ya. D. Sergeyev, http://www.theinfinitycomputer.com, (2004).

  17. Ya. D. Sergeyev, “A new applied approach for executing computations with infinite and infinitesimal quantities,” Informatica 19(4), 567–596 (2008).

    MathSciNet  MATH  Google Scholar 

  18. Ya. D. Sergeyev, “Numerical computations and mathematical modelling with infinite and infinitesimal numbers,” J. Appl.Math. Comp. 29, 177–195 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  19. Ya. D. Sergeyev, “Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains,” Nonlin. Anal. Series A: Theory, Methods & Appl. 71(12), e1688–e1707 (2009).

    Article  MathSciNet  Google Scholar 

  20. Ya. D. Sergeyev, “Counting systems and the First Hilbert problem,” Nonlin. Anal. Series A: Theory,Methods & Appl. 72(3–4), 1701–1708 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  21. Ya. D. Sergeyev, “Lagrange lecture: methodology of numerical computations with infinities and infinitesimals,” Rendiconti del Seminario Matematico dell’Universit à e del Politecnico di Torino 68(2), 95–113 (2010).

    MATH  Google Scholar 

  22. Ya.D. Sergeyev, “Higher order numerical differentiation on the Infinity Computer,” Optimization Lett. (2011), to appear.

  23. Ya. D. Sergeyev and A. Garro, “Observability of Turingmachines: A refinement of the theory of computation,” Informatica 21(3), 425–454 (2010).

    MathSciNet  MATH  Google Scholar 

  24. R. Spira, “Zeros of sections of the zeta function. I,” Math. Comp. 20(96), 542–550 (1966).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroslav D. Sergeyev.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sergeyev, Y.D. On accuracy of mathematical languages used to deal with the Riemann zeta function and the Dirichlet eta function. P-Adic Num Ultrametr Anal Appl 3, 129–148 (2011). https://doi.org/10.1134/S2070046611020051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046611020051

Key words

Navigation