Skip to main content
Log in

Kinetic regularities and mechanism of formation of nanosize passive films on titanium alloys for medical application and their electrochemical behavior in simulated physiological media

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Chronopotentiometry and potentiodynamic voltammetry simulated were used to study the electrochemical behavior of the new pseudoelastic medical Ti-Nb-Ta alloy in simulated physiological media (neutral and acidified Hank’s solution, artificial saliva) at temperatures of 37 and 50°C as compared to titanium and nitinol. The mechanism of formation of protective passive films on the alloy surface is proposed on the basis of analysis of kinetic regularities used to establish steady-state potentials during exposure to the corresponding solutions. X-ray photoelectron spectroscopy technique was used to study the composition of passivating layers on the surface of the Ti-Nb-Ta alloy after corrosion tests. It is found that the new alloy is as good as titanium as regards its corrosion-electrochemical characteristics and is not subjected to pitting corrosion, as opposed to nitinol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Encyclopedia of Materials: Science and Technology, Buschow, K.H.J., Cahn, R.W., Flemings, M.C., and Ilschner, B., Eds., Oxford: Elsevier, 2001, p. 9374.

    Book  Google Scholar 

  2. Surface Engineered Surgical Tools and Medical Devices, Jackson, M.J. and Ahmed, W., Eds., New York: Springer, 2007, p. 533.

    Book  Google Scholar 

  3. Long, M. and Rack, H.J., Biomaterials, 1998, vol. 19, p. 1621.

    Article  CAS  Google Scholar 

  4. Shape Memory Alloys: Fundamentals, Modeling, and Applications, Brailovski, V., Prokoshkin, S., Terriault, P., and Trochu, F., Eds., Montreal: ETS Publ., 2003, p. 755.

    Google Scholar 

  5. Miyazaki, S., Kim, H.Y., and Hosoda, H., Materials Science and Engineering A, 2006, vol. 438–440, p. 18.

    Article  Google Scholar 

  6. Niinomi, M., Sci. Technol. Adv. Mater., 2003, vol. 4, p. 445.

    Article  CAS  Google Scholar 

  7. Brailovski, V., Prokoshkin, S., Geauthier, M., et al., Mater. Sci. Eng. C, vol. 31, p. 643.

  8. Petrzhik, M.I., Filonov, M.R., Tregubov, A.A., et al., RF Patent no. 2302261, 2007.

  9. Titanium in Medicine: Material Science, Surface, Engineering, Biological Responses, and Medical Application, Brunette, D.M., Tengvall, P., Textor, M., and Thomsen, P., Berlin: Springer, 2001, p. 145.

    Google Scholar 

  10. Geetha, M., Durgalakshmi, D., and Asokamani, R., Recent Pat. Corros. Sci., 2010, vol. 2, p. 40.

    Article  Google Scholar 

  11. Fleck, C. and Eifler, D., Int. J. of Fatigue, 2010, vol. 32, no. 6, p. 929.

    Article  CAS  Google Scholar 

  12. Garbacz, H., Pisarek, M., and Kurzydlowski, K.J., Biomol. Eng., 2007, vol. 24, p. 559.

    Article  CAS  Google Scholar 

  13. Bozzini, B., Carlino, P., D’Urzo, L., et al., J. Mater. Sci. Mater. Med., 2008, vol. 19, p. 3443.

    Article  CAS  Google Scholar 

  14. Aziz-Kerrzo, M., Conroy, K.G., Fenelon, A.M., et al., Biomaterials, 2001, vol. 22, p. 1531.

    Article  CAS  Google Scholar 

  15. Vandenkerckhove, R., Chandrasekaran, M., Vermaut, P., et al., Mat. Sci. Eng. A, 2004, vol. 378, p. 532.

    Article  Google Scholar 

  16. Michiardi, A., Aparicio, C., Planell, J.A., and Gil, F.J., Surf. Coat. Technol., 2007, vol. 201, p. 6484.

    Article  CAS  Google Scholar 

  17. Rondelli, G. and Vicentini, B., Biomaterials, 1999, vol. 20, p. 785.

    Article  CAS  Google Scholar 

  18. Vasilescu, E., Drob, P., Raducanu, D., et al., Corros. Sci., 2009, vol. 51, p. 2885.

    Article  CAS  Google Scholar 

  19. Liu, X., Chub, P.K., and Ding, C., Mat. Sci. Eng. R, 2004, vol. 47, p. 49.

    Article  Google Scholar 

  20. Fiziko-khimicheskie svoistva okislov. Spravochnik (Physico-Chemical Properties of Oxides: Reference Book), Samsonov, G.V., Ed., Moscow: Metallurgiya, 1978.

    Google Scholar 

  21. Cabrera, N. and Mott, N.F., Rep. Prog. Phys., 1949, vol. 12, p. 163.

    Article  CAS  Google Scholar 

  22. Hauffe, K. and Ilschner, B.Z., Z. Elektrochem., 1954, vol. 58, p. 382.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Zhukova.

Additional information

Original Russian Text © Yu.S. Zhukova, Yu.A. Pustov, M.R. Filonov, 2012, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2012, Vol. 48, No. 3, pp. 267–273.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhukova, Y.S., Pustov, Y.A. & Filonov, M.R. Kinetic regularities and mechanism of formation of nanosize passive films on titanium alloys for medical application and their electrochemical behavior in simulated physiological media. Prot Met Phys Chem Surf 48, 315–321 (2012). https://doi.org/10.1134/S2070205112030203

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205112030203

Keywords

Navigation