Skip to main content
Log in

Enhanced Reflective Interference Spectra of Nanoporous Anodic Alumina Films by Double Electrochemical Deposition of Chemical Metal Nanoparticles

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The effect of selective color reflection enhancement from a double metalized nanoporous anodic alumina (NAA) film surface under proper conditions of electrochemical and chemical metal (Cu—Ag, Cu—Au) deposition has been observed. Selective coloration of the NAA films with high index of the reflection and wide range of the color tones was achieved. The additional chemical deposition of the noble metal leads to the enhancement of the selective reflection ability and the interference contrast of the reflected light. The distribution of the chemically deposited silver nanoparticles on the top surface of electrochemically copper metalized pores of anodized aluminum has been shown by the electron microscopy method. The optical reflection spectra at different angles (10°-85°) of metalized NAA film have been measured, and the effective index of refraction (n ≈ 1.6) and film thickness have been calculated. The effect of the reflected light interference contrast enhancement has been explained as being a result of the more effective separation of the two reflecting surfaces air/Al2O3 in the structure of the film similar to a Fabry-Pérot interferometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Masuda, H. and Fukuda, K., Science, 1995, vol. 268, p. 1466.

    Article  Google Scholar 

  2. Moon, J. and Wei, A., J. Phys. Chem. B, 2005, vol. 109, p. 23336.

    Article  Google Scholar 

  3. Sauer, G., Brehm, G., Schneider, S., et al., J. Appl. Phys., 2002, vol. 91, p. 3243.

    Article  Google Scholar 

  4. Sauer, G., Brehm, G., Schneider, S., et al., J. Appl. Phys., 2005, vol. 97, p. 024308.

    Article  Google Scholar 

  5. Nielsch, K., Muller, F., Li, A., et al., Adv. Mater., 2000, vol. 12, p. 582.

    Article  Google Scholar 

  6. Belov, A., Gavrilov, S., Shevyakov, V., et al., Appl. Phys. A, 2011, vol. 102, p. 219.

    Article  Google Scholar 

  7. Barnakov, Y., Kiriy, N., Black, P., et al., Opt. Mater. Express, 2011, vol. 1, p. 1061.

    Article  Google Scholar 

  8. Ng, C.K.Y. and Ngan, A.H.W., Chem. Mater., 2011, vol. 23, p. 5264.

    Article  Google Scholar 

  9. Guo, Y., Zhou, L., and Kameyama, H., Chem. Eng. J., 2011, vol. 168, p. 341.

    Article  Google Scholar 

  10. Alam, K.M., Singh, A.P., Bodepudi, S.C., et al., Surf. Sci., 2011, vol. 605, p. 441.

    Article  Google Scholar 

  11. Atrashchenko, A.V., Krasilin, A.A., Kuchuk, I.S., et al., Nanosyst.: Phys., Chem., Math., 2012, vol. 3, p. 31.

    Google Scholar 

  12. Xu, D.S., Chen, D.P., Xu, Y.J., et al., Pure Appl. Chem., 2000, vol. 72, p. 127.

    Google Scholar 

  13. Zhang, D., Zhang, H., and He, Y., Microsc. Res. Tech., 2006, vol. 69, p. 267.

    Article  Google Scholar 

  14. Hwang, S.K., Jeong, S.H., Lee, O.J., et al., Microelectron. Eng., 2005, vol. 77, p. 2.

    Article  Google Scholar 

  15. Kumeria, T. and Losic, D., Nanoscale Res. Lett., 2012, vol. 7, p. 88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shelkovnikov.

Additional information

Original Russian Text © V.V. Shelkovnikov, G.A. Lyubas, S.V. Korotaev, 2016, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2016, Vol. 52, No. 2, pp. 160–164.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelkovnikov, V.V., Lyubas, G.A. & Korotaev, S.V. Enhanced Reflective Interference Spectra of Nanoporous Anodic Alumina Films by Double Electrochemical Deposition of Chemical Metal Nanoparticles. Prot Met Phys Chem Surf 52, 227–231 (2016). https://doi.org/10.1134/S207020511602026X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020511602026X

Keywords

Navigation