Skip to main content
Log in

Nano carbon containing low carbon magnesia carbon refractory: an overview

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Steel manufacturing technology has changed drastically in last few decades to meet the demand of high purity and quality of steel from the steel users. The advancements in steel making process have also demanded high quality refractories to withstand severe operating conditions and to produce desired steel quality. Magnesia carbon refractories, being essential for making and processing of steel, have gone through many modifications since its inception and still are one of the major challenging areas for refractories development. Only a few years ago higher use of carbon was assumed to be beneficial for the refractories performances and life but the concept has been proven wrong and low carbon containing MgO-C refractories are becoming the point of attention. Reduction in carbon content in MgO-C refractories without much affecting their properties have been tried by many ways by many researchers, amongst them use of nano carbon is widely popular. This review discusses the prospects for using nano carbons in MgO-C refractory and various research works that are going on and also on the development of low carbon containing magnesia carbon refractories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ishii, H., Nagafune, M., and Tsuchiya, I., Taikabutso Overseas, 1991, vol. 11, p. 9.

    Google Scholar 

  2. Kurata, K., Matsui, T., and Kono, K., Taikabutso Overseas, 1991, vol. 11, p. 17.

    Google Scholar 

  3. Faghihi-Sani, M.-A. and Yamaguchi, A. Ceram. Int., 2002, vol. 28, p. 835.

    Article  Google Scholar 

  4. Karakus, M., Smith, J.D., and Moore, R.E., in Proc. 5th Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., New Orleans, LA, 1997, p. 745.

    Google Scholar 

  5. Landy, R.A., Refractories. Handbook, Schacht, C., Ed., New York: Marcel Dekker, 2004, p. 109.

  6. Ganesh, I., et al., Ceram. Int., 2002, vol. 28, p. 245.

    Article  Google Scholar 

  7. Chester, J.H., Steel Plant Refractories, Pittsburgh, PA: United Steel, 1963, p. 582.

    Google Scholar 

  8. Jakson, B. and Webster, R., ISI, 1981, vol. 4, p. 67.

    Google Scholar 

  9. Mattila, R., Vatanan, J., and Harkki, J., in 6th Int. Conf. on Molten Slag and Salts, Stockholm, 2000, p. 159.

    Google Scholar 

  10. Jia-Quan, L., in Proc. Int. Symp. on Refractories “Refractory Raw Materials and High Temperature Performance Refractory Products,” Hangzhou, China, 1988, p. 321.

    Google Scholar 

  11. Doty, J.R. and Conrad, J.P., Trans. Iron Steel Soc. AIME, 1990, vol. 54, p. 389.

    Google Scholar 

  12. Miglani, S. and Uchno, J.J., Veitsch-Radex Rundsch., 1998, vol. 6, p. 3.

    Google Scholar 

  13. Gupta, A.D. and Vikram, K., Interceram, 1999, vol. 48, p. 307.

    Google Scholar 

  14. Bavand-Vandchali, M., et al., Ceram. Soc., 2008, vol. 28, p. 563.

    Article  Google Scholar 

  15. Rancoule, G. and Debastiani, L.D., WO Patent 9321128A1, 1993.

    Google Scholar 

  16. Buchener, G. and Pike, S., Veitsch-Radex Rundsch., 1996, vol. 2, p. 3.

    Google Scholar 

  17. Yin, G.X., Pan, B., Gao, X.K., et al., Taikbastu (Chinese), 2010, vol. 44, p. 355.

    Google Scholar 

  18. Wei, T., Fan, Z.J., Luo, G.L., et al., Carbon, 2008, vol. 47, p. 337.

    Article  Google Scholar 

  19. Ogata, K. and Litsuka, S., WO Patent 9938818Al, 1999.

    Google Scholar 

  20. Buhr, A., CN Refract., 1999, vol. 6, p. 19.

    Google Scholar 

  21. Takeshita, S., Hasegawa, S., Aratani, K., and Kawakani, T., Taikbastu (Refractories), 1987, vol. 39, p. 345.

    Google Scholar 

  22. Mianami, M., Furusato, I., Fukurka, H., et al., Refractories (Tokyo), 1994, vol. 6, p. 277.

    Google Scholar 

  23. Engh, T.A., Principle of Metal Refining, New York: Oxford Univ. Press, 1992.

    Google Scholar 

  24. Li, J.H., Feng, L.L., and Jia, Z.X., Mater. Lett., 2006, vol. 60, p. 746.

    Article  Google Scholar 

  25. Hayashi, S., Takahashi, H., Watanabe, A., et al., J. Ceram. Soc. Jpn., 1994, vol. 102, p. 23.

    Article  Google Scholar 

  26. Sengupta, R., Bhattacharya, M., Bandyopadhyay, S., and Bhowmick, A., Prog. Polym. Sci., 2011, vol. 36, p. 638.

    Article  Google Scholar 

  27. Mohoamed, E. and Ewais, M., J. Ceram. Soc. Jpn., 2004, vol. 112, p. 517.

    Article  Google Scholar 

  28. Peng, X., Li, L., and Peng, D., Refractories, 2003, vol. 37, p. 355.

    Google Scholar 

  29. Boquan, Z., Wenjie, Z., and Yashuang, Y., Refractories, 2006, vol. 40, p. 90.

    Google Scholar 

  30. Tamura, S., Ochiai, T., Takanaga, S., et al., in Proc. 8th Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., October 19–22, 2003, Osaka, Japan, 2003, p. 517.

    Google Scholar 

  31. Zhao, J.G., Guo, Q.G., Shi, J.L., et al., Carbon, 2009, vol. 47, p. 1747.

    Article  Google Scholar 

  32. Yu, M.F., Lourie, O., Dyer, M.J., et al., Science, 2000, vol. 287, p. 637.

    Article  Google Scholar 

  33. Hattanda, H., Yotabun, T., Tsuda, T., and Tanabe, H., in Proc. Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., Kyoto, Japan, 2011, p. 983.

    Google Scholar 

  34. Tanaka, M., Kamioa, H., Yoshitomi, J., et al., in Proc. Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., Kyoto, Japan, 2011, p. 976.

    Google Scholar 

  35. Yasumitsu, H., Hirashima, M., Matsuura, O., et al., in Proc. Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., Kyoto, Japan, 2011, p. 975.

    Google Scholar 

  36. Tamura, S., Ochiai, T., Takanaga, S., et al., in Proc. Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., Kyoto, Japan, 2011, vol. 2, p. 971.

    Google Scholar 

  37. Hattanda, H., Yotabun, T., Tsuda, T., et al., in Proc. Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., Dresden, Germany, 2007, p. 204.

    Google Scholar 

  38. Tamura, S., Urushibara, Y., Matsuura, O., and Shin, T., in Proc. Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., September 18–21, 2007, Dresden, Germany, 2007, p. 627.

    Google Scholar 

  39. Hatta, M., Takanaga, S., Matsuura, O., et al., in Proc. Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., Dresden, Germany, 2007, p. 614.

    Google Scholar 

  40. Tamura, S., Ochiai, T., Mastui, T., and Goto, K., Nippon Steel Technical Report No. 98, 2008, p. 18.

    Google Scholar 

  41. Kuznetsov, D.V., Lysov, D.V., Nemtinov, A.A., et al., Refract. Ind. Ceram., 2010, vol. 51, p. 61.

    Article  Google Scholar 

  42. Saberi, A., J. Eur. Ceram. Soc., 2008, vol. 28, p. 2011.

    Article  Google Scholar 

  43. Mukhopahyay, S., Ceram. Int., 2009, vol. 35, p. 373.

    Article  Google Scholar 

  44. Ghosh, S., Ceram. Int., 2003, vol. 29, p. 671.

    Article  Google Scholar 

  45. Cardoso, F.A., J. Eur. Ceram. Soc., 2004, vol. 24, p. 2073.

    Article  Google Scholar 

  46. Pagliosa, C., Freire, N., and Cholodovskis, G., in Proc. Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., British Columbia, Canada, 2013, p. 673.

    Google Scholar 

  47. Das, R.R., Nayak, B.B, Adak, S., and Chattopadhyay, A.K., Mater. Manuf. Process., 2012, vol. 27, p. 242.

    Article  Google Scholar 

  48. Mukhopadhyay, S. and Pal, T.K., Ceram. Int., 2009, vol. 35, p. 373.

    Article  Google Scholar 

  49. Das, R.R., Nayak, B.B, Adak, S., and Chattopadhyay, A.K., in Proc. Indian Int. Refractories Congr. (IREFCON), Kolkata, India, 2010, p. 155.

    Google Scholar 

  50. Ghosh, S., Lodha, R., Barick, P., and Mukhopadhyay, S., Mater. Manuf. Process., 2007, vol. 22, p. 81.

    Article  Google Scholar 

  51. Mukhopadhyay, S. and Poddar Das, P.K., Mater. Manuf. Process., 2006, vol. 21, p. 669.

    Article  Google Scholar 

  52. Zhu, Y.Q. and Kennedy, A., J. Eur. Ceram. Soc., 2010, vol. 30, p. 865.

    Article  Google Scholar 

  53. Asano, K., et al., WO Patents 2007011038A1, 2007.

    Google Scholar 

  54. Tamura, S., Ochisi, T., and Takanga, S., in Proc. Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., 2003, p. 521.

    Google Scholar 

  55. Lin, L., Guangsheng, T., Zhiyong, H., et al., in Proc. 11th Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., Salvador, Brazil, 2009, p. 425.

    Google Scholar 

  56. Ochiai, T., Taikabustu, 2004, vol. 56, p. 152.

    Google Scholar 

  57. Liu, B., Sun, J., Tang, G., et al., J. Iron Steel Res. Int., 2010, vol. 17, p. 75.

    Article  Google Scholar 

  58. Tani, C., Sugimoto, H., Nomura, O., et al., Shinagawa Tech. Rep., 1995, vol. 38, p. 25.

    Google Scholar 

  59. Moriwaki, K., Hoshiyama, Y., Nomura, Q., and Ichikawit, K., Taikabutsu, 1997, vol. 49, p. 600.

    Google Scholar 

  60. Hosiyama, Y., Moriwaki, K., and Nomura, O., Taikabutsu, 1998, vol. 50, p. 426.

    Google Scholar 

  61. Xuejun, Y., Zheming, Q., and Liangquan, H., Proc. Aircraft Mater., 2003, vol. 33, p. 34.

    Google Scholar 

  62. Rancoule, I.G., US Patent 5335833, 1984.

    Google Scholar 

  63. Zhu, T., Li, Y., Sang, S., et al., Ceram. Int., 2014, vol. 40, p. 4333.

    Article  Google Scholar 

  64. Wang, K., Wang, Y.F., Fan, Z.J., et al., Mat. Res. Bull., 2011, vol. 46, p. 315.

    Article  Google Scholar 

  65. Kun, P., Tapaszto, O., Weber, F., and Balazsi, C., Ceram. Int., 2012, vol. 38, p. 211.

    Article  Google Scholar 

  66. Potts, J.R., Dreyer, D.R., Bielawski, C.W., and Ruoff, R.S., Polymer, 2011, vol. 52, p. 5.

    Article  Google Scholar 

  67. Jang, B.Z. and Zhamu, A., J. Mater. Sci., 2008, vol. 43, p. 5092.

    Article  Google Scholar 

  68. Rigaud, M., Bombard, P., Li, X., and Gueroult, B., in Proc. Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., 1993, p. 360.

    Google Scholar 

  69. Suruga, T., Taikabutso Overseas, 1995, vol. 15, p. 25.

    Google Scholar 

  70. Lee, J.E., Bae, I., Cho, Y., and Um, C., in Proc. 53d Int. Colloquium on Refractories, Aachen, Germany, 2010, p. 159.

    Google Scholar 

  71. Matsui, T., Goto, K., Yamada, Y., and Taki, N., in Proc. 9th Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., Orlando, FL, 2005, vol. 4, p. 176.

    Google Scholar 

  72. Takanaga, S., Fujiwara, Y., and Hatta, M., in Proc. 9th Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., Orlando, FL, 2005, p. 148.

    Google Scholar 

  73. Ochiai, T., J. Tech. Assoc. Refract. (Japan), 2005, vol. 25, p. 4.

    Google Scholar 

  74. Aneziris, C.G., Borzov, D., and Hampel, M., in Proc. 9th Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., Orlando, FL, 2005, p. 261.

    Google Scholar 

  75. Watanabe, A., Takahasi, H., Maqtsuki, T., and Takahasi, M., Taikabutsu, 1985, vol. 5, p. 7.

    Google Scholar 

  76. Matsumura, T., Uto, S., Hosokawa, K., and Gegi, M., Taikabutsu, 1988, vol. 8, p. 24.

    Google Scholar 

  77. Lau, K.T. and Hui, D., Composites, Part B, 2002, vol. 33, p. 263.

    Article  Google Scholar 

  78. Yang, Z.X., Ha, N.R., Hwang, K.H., et al., in Proc. 11th Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., Salvador, Brazil, 2009, p. 474.

    Google Scholar 

  79. Yang, X., Qiu, Z.H., and Liang, Q., J. Aerosp. Mater. Tech., 2003, vol. 33, p. 4.

    Google Scholar 

  80. Gokce, A.S., Gurcan, C., Ozgen, S., and Aydin, S., Ceram. Int., 2008, vol. 34, p. 323.

    Article  Google Scholar 

  81. Rocha, V.G., Menéndez, R., Santamaría, R., et al., J. Analyt. Appl. Pyrol., 2010, vol. 88, p. 207.

    Article  Google Scholar 

  82. Wang, T. and Yamaguchi, A., J. Am. Ceram. Soc., 2001, vol. 84, p. 577.

    Article  Google Scholar 

  83. Ghosh, N.K., Jagannathan, K.P., and Ghosh, D.N., Interceram, 2001, vol. 50, p. 196.

    Google Scholar 

  84. Luz, A.P. and Pandolfelli, V.C., Cerâmica, 2007, vol. 53, p. 334.

    Article  Google Scholar 

  85. Ye, F., Rigaud, M., and Zhong, X., in Proc. Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., New Orleans, LA, 1997, p. 807.

    Google Scholar 

  86. Zhu, T.B., Li, Y.W., Luo, M., et al., Ceram. Int., 2014, vol. 39, p. 3017.

    Article  Google Scholar 

  87. Zhu, T.B., Li, Y.W., Jin, S.L., et al., Ceram. Int., 2013, vol. 39, p. 4529.

    Article  Google Scholar 

  88. Zhang, S., Marriott, N.J., and Lee, W.E., J. Eur. Ceram. Soc., 2001, vol. 21, p. 1037.

    Article  Google Scholar 

  89. Fan, H.B., Li, Y.W., Huang, Y.P., et al., Mater. Sci. Eng., A, 2012, vol. 545, p. 148.

    Article  Google Scholar 

  90. Fan, H.B., Li, Y.W., and San, S.B., Mater. Sci. Eng., A, 2011, vol. 528, p. 3177.

    Article  Google Scholar 

  91. Li, Y.W., Sang, S.B., Tong, B., et al., in Proc. Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., Salvalar, Brazil, 2009

    Google Scholar 

  92. Luo, M., Li, Y., Jin, S., et al., Mater. Sci. Eng., A, 2012, vol. 548, p. 134.

    Article  Google Scholar 

  93. Zhang, S. and Lee, W.E., J. Eur. Ceram. Soc., 2001, vol. 21, p. 2393.

    Article  Google Scholar 

  94. Yo, J. and Yamaguchi, A., J. Ceram. Soc. Jpn., 1993, vol. 101, p. 475.

    Article  Google Scholar 

  95. Brezny, B. and Landy, R., Trans. J. Brit. Ceram. Soc., 1972, vol. 71, p. 163.

    Google Scholar 

  96. Behera, S. and Sarkar, R., Int. J. Appl. Ceram. Tech., 2014, vol. 11, p. 968.

    Article  Google Scholar 

  97. Roungos, V. and Aneziris, C.G., Ceram. Int., 2012, vol. 38, p. 919.

    Article  Google Scholar 

  98. Bag, M., Adak, S., and Sarkar, R., Ceram. Int., 2012, vol. 38, p. 2339.

    Article  Google Scholar 

  99. Bag, M., Adak, S., and Sarkar, R., Ceram. Int., 2012, vol. 38, p. 4909.

    Article  Google Scholar 

  100. Bag, M., Sarkar, R., Rana, R.P., et al., in Proc. Unified Int. Tech. Conf. Refract., Bienn. Worldwide Congr., British Columbia, Canada, 2013, p. 227.

    Google Scholar 

  101. Bag, M., Sarkar, R., and Adak, S.M., Development of environment friendly new generation MgO-C brick using nanocarbon, Dissertation, Rourkela, India: NIT, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyananda Behera.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, S., Sarkar, R. Nano carbon containing low carbon magnesia carbon refractory: an overview. Prot Met Phys Chem Surf 52, 467–474 (2016). https://doi.org/10.1134/S2070205116030059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116030059

Navigation