Skip to main content
Log in

Experimental study and numerical modeling: Methane adsorption in microporous carbon adsorbent over the subcritical and supercritical temperature regions

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Adsorption properties of AU-4 microporous carbon adsorbent have been investigated for evaluating the effectiveness of methane accumulation over the temperature range from 178 to 360 K and at absolute pressures up to 25 MPa. It has been established that, within the pressure and temperature intervals under study, the maximum amount of methane achieved 160 nm3(СН4)/m3. Efficient accumulation of methane in the AC-4 adsorbent over the entire temperature range was possible only within the interval of pressures from 1 to 7 MPa. When the “methane−AU-4” accumulation system was used at room temperature, the highest effect of adsorption accumulation may be achieved at pressures of 3–7 MPa. The differential and integral adsorption heats have been calculated and the degrees of overheating have been evaluated for methane storage systems with adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Solar, C., Blanco, A.G., Vallone, A., and Sapag, K., in Natural Gas, Potocnik, P., Ed., Rijeka: Sciyo, 2010, p. 205.

  2. Prajwal, B.P. and Ayappa, K.G., Adsorption, 2014, vol. 20, p. 769.

    Article  Google Scholar 

  3. Shkolin, A.V., Fomkin, A.A., Strizhenov, E.M., and Pulin, A.L., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 279.

    Article  Google Scholar 

  4. Men’shchikov, I.E., Fomkin, A.A., Tsivadze, A.Yu., Shkolin, A.V., Strizhenov, E.M., and Pulin, A.L., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p. 493.

    Article  Google Scholar 

  5. Nabiulin, V.V., Fomkin, A.A., Shkolin, A.V., Tvardovsky, A.V., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p. 49.

    Article  Google Scholar 

  6. Anuchin, K.M., Fomkin, A.A., Korotych, A.P., and Tolmachev, A.M., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 2, pp. 173–177.

    Article  Google Scholar 

  7. Dubinin, M.M., Adsorbtsiya i poristost' (Adsorption and Porosity), Moscow: Military Academy of Chemical Defense Named after Marshal of the USSR S.K. Timoshenko, 1972.

    Google Scholar 

  8. Sychev, V.V., Vasserman, A.A., and Zagoruchenko, V.A., Termodinamicheskie svoistva metana (Thermodynamic Properties of Methane), Moscow: Izd. Standartov, 1979.

    Google Scholar 

  9. Strizhenov, E.M., Shkolin, A.V., Fomkin, A.A., Sinitsyn, V.A., Zherdev, A.A., Smirnov, I.A., and Pulin, A.L., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 15.

    Article  Google Scholar 

  10. Burdun, G.D. and Markov, B.N., Osnovy metrologii (Foundations of Metrology), Moscow: Izd. Standartov, 1985, p. 256.

    Google Scholar 

  11. Fomkin, A.A., Shkolin, A.V., Men'shchikov, I.E., Pulin, A.L., et al., Measurement Techniques, 2016, vol. 58, issue 12, pp. 1387–1391.

    Article  Google Scholar 

  12. Pribylov, A.A., Kalashnikov, S.M., and Serpinskii, V.V., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1990, vol. 39, pp. 1105–1110.

    Article  Google Scholar 

  13. Phillips, J.C., Braun, R., Wang, W., et al., J. Comput. Chem., 2005, vol. 26, p. 1781.

    Article  Google Scholar 

  14. Jorgensen, W., Maxwell, D., and Tirado-Rives, J., J. Am. Chem. Soc., 1996, vol. 118, p. 11225.

    Article  Google Scholar 

  15. Grest, G.S. and Kremer, K., Phys. Rev. A, 1986, vol. 33, p. 3628.

    Article  Google Scholar 

  16. Feller, S.E., Zhang, Y., Pastor, R.W., and Brooks, B.R., J. Chem. Phys., 1995, vol. 103, p. 4613.

    Article  Google Scholar 

  17. Chkhaidze, E.V., Fomkin, A.A., Serpinskii, V.V., and Tsitsishvili, G.V., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, vol. 35, p. 847.

    Article  Google Scholar 

  18. Kel'tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Foundations of Absorption Engineering), Moscow: Khimiya, 1976.

    Google Scholar 

  19. Shkolin, A.V., Fomkin, A.A., and Yakovlev, V.Yu., Russ. Chem. Bull., 2007, vol. 56, p. 393.

    Article  Google Scholar 

  20. Fomkin, A.A., Adsorption, 2005, vol. 11, nos. 3–4, p. 425.

    Article  Google Scholar 

  21. Bülow, M., Shen, D., and Jale, S., Appl. Surf. Sci., 2002, vol. 196, p. 157.

    Article  Google Scholar 

  22. Tsivadze, A.Yu. and Fomkin, A.A., Fizicheskaya khimiya adsorbtsionnykh yavlenii (Physical Chemistry of Absorption Phenomena), Moscow: Granitsa, 2011, p. 6.

    Google Scholar 

  23. Bakaev, V.A., Doctoral Sci. (Phys.-Math.) Dissertation, Moscow: Moscow State Univ., 1989.

    Google Scholar 

  24. Burchell, T. and Rogers, M., SAE Technical Paper Series 2000-01-2205, 2000. doi: 10.4271/2000-01-2205

    Google Scholar 

  25. Shkolin, A.V. and Fomkin, A.A., Russ. Chem. Bull., 2008, vol. 57, p. 1799.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shkolin.

Additional information

Original Russian Text © A.V. Shkolin, A.A. Fomkin, A.Yu. Tsivadze, K.M. Anuchin, I.E. Men’shchikov, A.L. Pulin, 2016, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2016, Vol. 52, No. 6, pp. 563–571.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkolin, A.V., Fomkin, A.A., Tsivadze, A.Y. et al. Experimental study and numerical modeling: Methane adsorption in microporous carbon adsorbent over the subcritical and supercritical temperature regions. Prot Met Phys Chem Surf 52, 955–963 (2016). https://doi.org/10.1134/S2070205116060186

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116060186

Navigation