Skip to main content
Log in

Photocatalytic properties of Zn- and Cd-containing oxide layers on titanium formed by plasma electrolytic oxidation

  • New Substances, Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Element and phase compositions, surface morphology, and photocatalytic activity of oxide coatings on titanium formed by the method of plasma electrolytic oxidation in sulfate and phosphate electrolytes with and without addition of cadmium and zinc salts have been investigated. The coatings were studied by means of the X-ray spectral method, X-ray diffraction analysis, and electron microscopy. The photocatalytic activity of oxide layers depends on their element and phase composition and surface morphology. The highest photocatalytic activity in the reaction of degradation of Methylene Blue is demonstrated by titanium oxide coatings doped with cadmium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X. and Mao, S.S., Chem. Rev., 2007, vol. 107, p. 2891.

    Article  Google Scholar 

  2. Hashimoto, K., Irie, H., and Fujishima, A., AAPPS Bull., 2007, vol. 17, p. 12.

    Google Scholar 

  3. Chernenko, V.I., Snezhko, L.A., and Papanova, I.I., Poluchenie pokrytii anodno-iskrovym elektrolizom (Coatings Synthesized by means of Anode-Spark Electrolysis), Leningrad: Khimiya, 1991.

    Google Scholar 

  4. Yerokhin, A.L., Nie, X., Leyland, A., et al., Surf. Coat. Technol., 1999, vol. 122, nos. 2–3, p. 73.

    Article  Google Scholar 

  5. Gordienko, P.S., Rudnev, V.S., Gnedenkov, S.V., et al., Zh. Prikl. Khim., 1995, vol. 68, no. 6, p. 971.

    Google Scholar 

  6. Meyer, S., Gorges, R., and Kreisel, G., Thin Solid Films, 2004, vol. 450, no. 2, p. 276.

    Article  Google Scholar 

  7. Xiaohong, W., Zhaohua, J., Huiling, L., et al., Thin Solid Films, 2003, vol. 441, nos. 1–2, p. 130.

    Article  Google Scholar 

  8. Wu, X., Wei, Q., and Zhaohua, J., Thin Solid Films, 2006, vol. 496, no. 2, p. 288.

    Article  Google Scholar 

  9. He, J., Luo, Q., Cai, Q.Z., et al., Mater. Chem. Phys., 2011, vol. 129, p. 242.

    Article  Google Scholar 

  10. Salami, N., Bayati, M.R., Golestani-Fard, F., et al., Mater. Res. Bull., 2012, vol. 47, no. 4, p. 1080.

    Article  Google Scholar 

  11. Bayati, M.R., Moshfegh, A.Z., and Golestani-Fard, F., Appl. Surf. Sci., 2010, vol. 256, no. 9, p. 2903.

    Article  Google Scholar 

  12. Bayati, M.R., Golestani-Fard, F., and Moshfegh, A.Z., Mater. Chem. Phys., 2010, vol. 120, nos. 2–3, p. 582.

    Article  Google Scholar 

  13. Haitao, J., Zhongcai, Sh., and Benqin, J., Procedia Earth Planet. Sci., 2011, vol. 2, p. 156.

    Article  Google Scholar 

  14. Oh, H.-J. and Chi, Ch.-S., Mater. Lett., 2012, vol. 86, p. 31.

    Article  Google Scholar 

  15. He, J., Cai, Q.Z., Xiao, F., et al., J. Alloys Compd., 2011, vol. 509, no. 3, p. L11.

    Article  Google Scholar 

  16. Shin, Y.-K., Chae, W.-S., Song, Y.-W., et al., Electrochem. Commun., 2006, vol. 8, no. 3, p. 465.

    Article  Google Scholar 

  17. Petrović, S., Stojadinović, S., Rožić, Lj., et al., Surf. Coat. Technol., 2015, vol. 269, p. 250.

    Article  Google Scholar 

  18. Vasilić, R., Stojadinović, S., Radić, N., et al., Mater. Chem. Phys., 2015, vol. 151, p. 337.

    Article  Google Scholar 

  19. Stojadinović, S., Vasilić, R., Radić, N., et al., Opt. Mater., 2015, vol. 40, p. 20.

    Article  Google Scholar 

  20. Traida, H.D., Vera, M.L., Ares, A.E., et al., Procedia Mater. Sci., 2015, vol. 9, p. 619.

    Article  Google Scholar 

  21. Soejima, T., Yagyu, H., and Ito, S., J. Mater. Sci., 2011, vol. 46, no. 16, p. 5378.

    Article  Google Scholar 

  22. Grishina, E.P., Kudryakova, N.O., Rumyantsev, P.A., et al., Surf. Eng. Appl. Electrochem., 2013, vol. 49, no. 1, p. 83.

    Article  Google Scholar 

  23. Wang, Q., Jiang, H., Zang, S., et al., J. Alloys Compd., 2014, vol. 586, p. 411.

    Article  Google Scholar 

  24. Andronic, L., Enesca, A., Vladuta, C., et al., Chem. Eng. J., 2009, vol. 152, no. 1, p. 64.

    Article  Google Scholar 

  25. Devi, L.G., Kottam, N., Murthy, B.N., et al., J. Mol. Catal. A: Chem., 2010, vol. 328, nos. 1–2, p. 44.

    Article  Google Scholar 

  26. Devi, L.G., Murthy, B.N., and Kumar, S.G., Mater. Sci. Eng., B, 2010, vol. 166, no. 1, p. 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Rudnev.

Additional information

Original Russian Text © M.S. Vasilyeva, V.S. Rudnev, D.A. Tarabrina, 2017, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2017, Vol. 53, No. 4, pp. 426–430.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyeva, M.S., Rudnev, V.S. & Tarabrina, D.A. Photocatalytic properties of Zn- and Cd-containing oxide layers on titanium formed by plasma electrolytic oxidation. Prot Met Phys Chem Surf 53, 711–715 (2017). https://doi.org/10.1134/S2070205117040232

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205117040232

Keywords

Navigation