Skip to main content
Log in

Dynamic Mechanical and Electrochemical Analysis of Newly Synthesized Polyurethane/CuO–NiO Mixed Metal Oxide Nanocomposite Coated Steel in 3.5% NaCl solution

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

CuO–NiO mixed metal oxide nanoparticles were synthesized and characterized by Fourier transformed infrared spectroscopy (FTIR) and X-ray diffractometry (XRD) analysis. The inclusion of mixed CuO–NiO nanoparticles in the polyurethane (PU) results in the formation of PU/CuO–NiO nanocomposite which was coated on the mild steel. The anticorrosion behaviour of PU/CuO–NiO nanocomposite coating was electrochemically studied and compared with pure polyurethane coating by scanning electrochemical microscopy (SECM), potentiodynamic polarization studies and electrochemical impedance spectroscopy (EIS) for 1, 240, 480, and 720 h of immersion in 3.5% NaCl solution. EIS studies showed a pronounced protection performance for PU/CuO–NiO coating in 3.5% NaCl solution. SECM analysis measured lower current for the PU/CuO–NiO at the scratch of the coated surface compared to PU coating. Dynamic mechanical analysis (DMA) test was also carried out to investigate the coated nanocomposite. The results provided valuable information about the protective performance and failure analysis of PU/CuO–NiO nanocomposite coated surface. Field emission-scanning electron microscopy/energy dispersive X-ray (FE-SEM/EDX) analysis was used to examine the corrosion products formed on the surface of coated sample. The formation of thin films of oxides and chlorides of Cu and Ni blocks the penetration corrosive ion in the coating/metal interface. It was revealed from the mechanical properties of the nanocomposite and pure PU coatings that the mixed metal oxide nanoparticles (CuO–NiO) enhanced mechanical as well as barrier properties of the polyurethane coating against corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Roberge, P.R., Handbook of Corrosion Engineering, New York: McGraw-Hill, 1999.

    Google Scholar 

  2. González-García, Y., González, S., and Souto, R.M., Corros. Sci., 2007, vol. 49, pp. 3514–3526.

    Article  Google Scholar 

  3. Sabzi, M., Mirabedini, S.M., Zohuriaan-Mehr, J., and Atai, M., Prog. Org. Coat., 2009, vol. 65, pp. 222–228.

    Article  CAS  Google Scholar 

  4. Huang, T.C., Su, Y.A., Yeh, T.C., Huang, H.Y., Wu, C.P., Huang, K.Y., Chouc, Y.C., Yeh, J.M., and Weid, Y., Electrochim. Acta, 2011, vol. 56, pp. 6142–6149.

    Article  CAS  Google Scholar 

  5. Izumi, K., Murakami, M., Deguchi, T., Morita, A., Toghe, N., and Minami, T., J. Am. Ceram. Soc., 1989, vol. 72, no. 7, pp. 1465–1468.

    Article  CAS  Google Scholar 

  6. Bayal, N. and Jeevanandam, P., J. Alloys Compd., 2012, vol. 537, pp. 232–241.

    Article  CAS  Google Scholar 

  7. Koh, Y.H., Kwon, O.S., Hong, S.H., Kim, H.E., and Lee, S.K., J. Eur. Ceram. Soc., 2011, vol. 21, pp. 2407–2412.

    Article  Google Scholar 

  8. Raj, X.J. and Nishimura, T., J. Failure Anal. Prev., 2016, vol. 16, pp. 417–426

    Article  Google Scholar 

  9. Souto, R.M., Gonzalez-Garcia, Y., Izquierdo, J., and Gonzalez, S., Corros. Sci., 2010, vol. 52, pp. 748–753.

    Article  CAS  Google Scholar 

  10. Xavier, J.R., Anti-Corros. Methods Mater., 2018, vol. 65, pp. 38–45.

    Article  CAS  Google Scholar 

  11. Elkais, A.R., Gvozdenovi, M.M., Jugovi, B.Z., and Grgur, B.N., Prog. Org. Coat., 2013, vol. 76, pp. 670–676.

    Article  CAS  Google Scholar 

  12. Xavier, J.R. and Nallaiyan, R., J. Failure Anal. Prev., 2016, vol. 16, pp. 1082–1091.

    Article  Google Scholar 

  13. Behzadnasab, M., Mirabedini, S.M., Kabiri, K., and Jamali, S., Corros. Sci., 2011, vol. 53, pp. 89–98.

    Article  CAS  Google Scholar 

  14. Raj, X. Joseph, Prot. Met. Phys. Chem. Surf., 2019, vol. 55, pp. 80–88.

    Article  Google Scholar 

  15. Andreatta, F., Aldighieri, P., Paussa, L., Maggio, R.D., Rossi, S., and Fedrizzi, L., Electrochim. Acta, 2007, vol. 52, no.7, pp. 545–555.

    Article  Google Scholar 

  16. Jacek, G., Che, C., and Bogdan, S., Mater. Chem. Phys., 2013, vol. 139, pp. 944–952.

    Article  Google Scholar 

  17. Xiaoqing Xiao, Dongmei Wang, Yongxin Li, Emily Jackson, Yida Fang, Yan Zhang, Ning Xie, and Xianming Shi, Int. J. Electrochem. Sci., 2016, vol. 11, pp. 6023–6042.

    Article  CAS  Google Scholar 

  18. Xavier, J.R., J. Appl. Polym. Sci., 2020, vol. 137, p. 48323. https://doi.org/10.1002/app.48323

    Article  CAS  Google Scholar 

  19. Ramezanzadeh, B. and Attar, M.M., Mater. Chem. Phys., 2011, vol. 130, pp. 1208–1219.

    Article  CAS  Google Scholar 

  20. Xavier, J.R., J. Adhes. Sci. Technol., 2020, vol. 34, no.2, pp. 115–134.

    Article  CAS  Google Scholar 

  21. Szociński, M., Darowicki, K., and Schaefer, K., J. Coat. Technol. Res., 2013, vol. 10, pp. 65–72.

    Article  Google Scholar 

  22. Junfei Ou, Jinqing Wang, Yinong Qiu, Lanzhong Liu, and Shengrong Yang, Surf. Interface Anal., 2011, vol. 43, no. 4, pp. 803–808.

    Article  CAS  Google Scholar 

  23. Panagopoulos, C.N., Georgiou, E.P., Tsoutsouva, M.G., and Krompa, M., J. Coat. Technol. Res., 2011, vol. 8, pp. 125–133.

    Article  CAS  Google Scholar 

  24. Sangermano, M., Malucelli, G., Amerio, E., Priola, A., Billi, E., and Rizza, G., Prog. Org. Coat., 2015, vol. 54, pp. 134–138.

    Article  Google Scholar 

  25. Zhou, X. and Shen, Y., Surf. Coat. Technol., 2013, vol. 235, pp. 433–446.

    Article  CAS  Google Scholar 

  26. Ciubotariu, A., Benea, L., Varsanyi, M., and Dragan, V., Electrochim. Acta, 2008, vol. 53, pp. 4557–4563.

    Article  CAS  Google Scholar 

  27. Erten, U., Unal, H.I., Zor, S., and Atapek, S.H., J. Appl. Electrochem., 2015, vol. 45, pp. 991–1003.

    Article  CAS  Google Scholar 

  28. Fayomi, O.S.I. and Popoola, A.P.I., Surf. Eng. Appl. Electrochem., 2015, vol. 51, pp. 76–84.

    Article  CAS  Google Scholar 

  29. Gao, L. and Song, X.Q., Mater. Chem. Phys., 2008, vol. 110, pp. 52–55.

    Article  CAS  Google Scholar 

  30. Li, J., Ecco, L., Ahniyaz, A., Fedel, M., and Pana, J., J. Electrochem. Soc., 2015, vol. 162, no. 10, pp. 610–618.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Raj Xavier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph Raj Xavier Dynamic Mechanical and Electrochemical Analysis of Newly Synthesized Polyurethane/CuO–NiO Mixed Metal Oxide Nanocomposite Coated Steel in 3.5% NaCl solution. Prot Met Phys Chem Surf 57, 984–994 (2021). https://doi.org/10.1134/S2070205121050245

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121050245

Keywords:

Navigation