Skip to main content
Log in

Structure and properties of ultra-high molecular weight polyethylene filled with disperse hydroxyapatite

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The possibility of preparing composite materials filled with hydroxyapatite on the basis of ultra-high molecular weight polyethylene for use in replacement arthroplasty was studied. The composites were prepared by the combined mechanoactivation of the starting components followed by compaction via thermal pressing. The structures of the resulting composite powder and monolithic composite were investigated by means of differential scanning calorimetry and X-ray diffraction analysis, and the effect of introduced hydroxyapatite on the degree of polymer crystallinity was elucidated. The composites were tested to determine the concentration dependences of their physicomechanical and tribological properties. On the basis of the experimental data, it was concluded that the mechanoactivation processing affords the high-quality polymeric composites, thereby providing the disperse distribution of the filler over the matrix. By a combination of physicomechanical and tribological characteristics, the materials developed can be suggested for the production of articulated joint liners of hip and knee endoprostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Filippenko, V.A. and Tan’kut, A.V., Evolution of the Endoprosthesis Joint Replacement Problem, Mezhd. Med. Zh., 2009, vol. 15, no. 1, pp. 70–74.

    Google Scholar 

  2. Affatato, S., Bersaglia, G., Rocchi, M., et al., Wear Behavior of Cross-Linked Polyethylene Assessed in vitro under Severe Conditions, Biomaterials, 2005, vol. 26, pp. 3259–3267.

    Article  CAS  Google Scholar 

  3. Wang, A., Stark, C., and Dumbleton, J.H., Wear Mechanisms of Ultra-High-Molecular-Weight Polyethylene in Total Joint Replacements, Proc. Inst. Mech. End., 1996, vol. 210, pp. 141–155.

    Article  CAS  Google Scholar 

  4. Savich, V.V., Kiselev, M.G., and Voronovich, A.I., Sovremennye materialy khirurgicheskikh implantantov i instrumentov (Contemporary Materials of Chirurgic Implants and Tools), Minsk: Doktor Dizain, 2004.

    Google Scholar 

  5. Holley, K.G., Furman, B.D., Babalola, O.M., et al., Impingement of Acetabular Cups in a Hip Simulator: Comparison of Highly Cross-Linked and Conventional Polyethylene, J. Arthroplasty, 2005, vol. 20,Suppl. No. 3, pp. 77–86.

    Article  Google Scholar 

  6. Dangsher, X., Friction and Wear Properties of Ultra-High-Molecular-Weight Polyethylene Composites Reinforced with Carbon Fiber, Mater. Lett., 2005, vol. 59, pp. 175–179.

    Article  Google Scholar 

  7. Guild, F.J. and Bonfield, W., Predictive Modeling of Hydroxyapatite-Polyethylene Composite, Biomaterials, 1993, vol. 14, pp. 985–993.

    Article  CAS  Google Scholar 

  8. Wang, M., Deb, S., and Bonfield, W., Chemically Coupled Hydroxyapatite-Polyethylene Composites: Processing and Characterization, Mater. Lett., 2000, vol. 44, pp. 119–124.

    Article  CAS  Google Scholar 

  9. Joseph, R., McGregor, W.J., Martyn, M.T., et al., Effect of Hydroxyapatite Morphology/Surface Area on the Rheology and Processability of Hydroxyapatite Filled Polyethylene Composites, Biomaterials, 2002, vol. 23, pp. 4295–4302.

    Article  CAS  Google Scholar 

  10. Younesi, M. and Bahrololoom, M.E., Formulating the Effects of Applied Temperature and Pressure of Hot Pressing Process on the Mechanical Properties of Polypropylene-Hydroxyapatite Bio-Composites by Response Surface Methodology, Mater. Design, 2010, vol. 31, pp. 4621–4630.

    Article  CAS  Google Scholar 

  11. Yi Zuo, Yubao Li, Jidong Li, Xiang Zhang, et al., Novel Bio-Composite of Hydroxyapatite Reinforced Polyamide and Polyethylene: Composition and Properties, Mater. Sci. Eng., A, 2007, vol. 452–453, pp. 512–517.

    Google Scholar 

  12. Jarcho, M., Calcium Phosphate Ceramics as Hard Tissue Prosthetics, Clin. Orthop., 1981, vol. 157, pp. 259–278.

    CAS  Google Scholar 

  13. Barinov, S.M. and Komlev, V.S., Biokeramika na osnove fosfatov kal’tsiya (Bioceramics on the Base of Calcium Phosphates), Moscow: Nauka, 2005.

    Google Scholar 

  14. Fang, L., Leng, Y., and Gao, P., Processing of Hydroxyapatite Reinforced Ultrahigh Molecular Weight Polyethylene for Biomedical Applications, Biomaterials, 2005, vol. 26, pp. 3471–3478.

    Article  CAS  Google Scholar 

  15. Fang, L., Leng, Y., and Gao, P., Processing and Mechanical Properties of Hydroxyapatite/Ultra-High-Molecular-Weight Polyethylene Nanocomposites, Biomaterials, 2006, vol. 27, pp. 3701–3707.

    Article  CAS  Google Scholar 

  16. Fang, L., Gao, P., and Leng, Y., High Strength and Bioactive Hydroxyapatite Nanoparticles Reinforced Ultrahigh Molecular Weight Polyethylene, Composites, 2007, pp. 345–351.

  17. Liu, J.-L., Zhu, Y.-Y., Wang, Q.-L., and Ge, S.-R., Biotribological Behavior of Ultra High Molecular Weight Polyethylene Composites Containing Bovine Bone Hydroxyapatite, J. China Univ. Mining Technol., 2008, vol. 18, pp. 606–612.

    Article  CAS  Google Scholar 

  18. Xiong, L., Xiong, D.-S., and Jin, J.-B., Study on Tribological Properties of Irradiated Crosslinking Ultra-High-Molecular-Weight Polyethylene Nano-Composite, J. Bionic Eng., 2009, vol. 6, pp. 7–13.

    Article  Google Scholar 

  19. Andreeva, I.N., Veselovskaya, E.V., Nalivaiko, E.I., et al., Sverkhvysokomolekulyarnyi polietilen vysokoi plotnosti (Ultra-High-Molecular-Weight Polyethylene of High Density), Leningrad: Khimiya, 1982.

    Google Scholar 

  20. Gao, P. and Mackley, M.R., The Structure and Rheology of Molten Ultra-High-Molecular-Mass Polyethylene, Polymer, 1994, vol. 35, pp. 5210–5216.

    Article  CAS  Google Scholar 

  21. Kaloshkin, S.D., Tcherdyntsev, V.V., Sudarchikov, et al., The Properties of the Mechanoactivated Composite of Super-High-Molecular Polyethylene Filled by the Bronze Powder, Mater. Sci., 2008, no. 11, pp. 20–26.

  22. Kaloshkin, S.D., Vandi, L.-J., Tcherdyntsev, V.V., et al., Multi-Scaled Polymer-Based Composite Materials Synthesized by Mechanical Alloying, J. Alloys Comp., 2009, vol. 483, pp. 195–199.

    Article  CAS  Google Scholar 

  23. Avvakumov, E.G., D’yakov, V.E., Strugova, L.I., et al., Mechanical Activation of Solid Phase Reactions. Rep. 4: Cassiterite Solid Phase Restoration, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1974, No. 1, pp. 26–28.

  24. Sanchez, F.H., Torres, R.C.E., van Raap, F.M.B., and Zelis, M.L., Tool Induced Contamination of Elemental Powders during Mechanical Milling, Hyperfine Interact., 1998, vol. 113, pp. 269–277.

    Article  CAS  Google Scholar 

  25. Lanina, S.Ya., Suslova, V.Yu., Benyaev, N.E., et al., Chemical Risk Estimation of Super-High-Molecular Polyethylene and Hydroxyapatite in Endoprosthesis Replacement, Perspekt. Mater., 2011, No. 2, pp. 42–48.

  26. Maksimkin, A.V., Kaloshkin, S.D., Cherdyntsev, V.V., and Ergin, K.S., Influence of Mechanic Activation Treatment on Phase Composition and Mechanical Properties of Supra-Molecular Polyethylene (SMPE), Deform. Rapture Mater., 2010, no. 12, pp. 10–14.

  27. Lipatov, Yu.S., Shilov, V.V., Gomza, Yu.P., and Kruglyak, N.E., Rentgenograficheskie metody izucheniya polimernykh sistem (X-ray Methods of Polymer System Study), Kiev: Nauk. Dumka, 1982.

    Google Scholar 

  28. Wunderlich, B., Crystal Nucleation, Growth, Annealing, New York: Academic, 1976.

    Google Scholar 

  29. Rabek, J.F., Experimental Methods in Polymer Chemistry, New York: Wiley, 1980; Moscow: Mir, 1983.

    Google Scholar 

  30. Bazhenov, S.L., Berlin, A.A., Kul’kov, A.A., and Oshmyan, V.G., Polimernye kompozitsionnye materialy. Prochnost’ i tekhnologiya (Polymer Composite Materials. Hardness and Technology), Dolgoprudnyi: Intellekt, 2010.

    Google Scholar 

  31. Kochnev, A.M., Zaikin, A.E., Galibeev, S.S., and Arkhireev, V.P., Fizikokhimiya polimerov (Physicochemistry of Polymers), Kazan: Fen, 2003.

    Google Scholar 

  32. Olmos, D., Dominguez, C., Castrillo, P.D., and Gonzalez-Benito, J., Crystallization and Final Morphology of High-Density Polyethylene: Effect of the High Energy Ball Milling and Presence of TiO2 Nanoparticles, Polymer, 2009, vol. 50, pp. 1732–1742.

    Article  CAS  Google Scholar 

  33. Yamada, H., Strength of Biological Materials, New York: Kriger, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Maksimkin.

Additional information

Original Russian Text © A.V. Maksimkin, S.D. Kaloshkin, V.V. Tcherdyntsev, F.S. Senatov, V.D. Danilov, 2012, published in Materialovedenie, 2011, No. 11, pp. 13–21.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimkin, A.V., Kaloshkin, S.D., Tcherdyntsev, V.V. et al. Structure and properties of ultra-high molecular weight polyethylene filled with disperse hydroxyapatite. Inorg. Mater. Appl. Res. 3, 288–295 (2012). https://doi.org/10.1134/S2075113312040132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113312040132

Keywords

Navigation