Skip to main content
Log in

Synthesis and structure of copper nanoparticles and their antiinfection properties

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Copper nanoparticles localized on the surface of cotton fabric are synthesized. The structure and composition of the particles are determined by EXAFS, TEM, EPR, and XRF. The nanoparticles obtained are suggested to have a core shell structure. The study shows that copper is distributed in the fabric in the form of nanoparticles associated with fragments of macromolecules, on one hand, and in the form of nanoparticle conglomerates on the surfaces of the filaments of fibers, on the other hand. Modification of natural fabrics by copper nanoparticles results in complete destruction of Epidermophyton colonies and suppresses growth of Candida colonies, which makes it possible to apply such fabric in treatment of fungal diseases and in antiseptic treatment and healing of septic wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sahithi, K., Swetha, M., Prabaharan, M., Moorthi, A., Saranya, N., Ramasamy, K., Srinivasan, N., Partridge, N.C. and Selvamurugan, N. Synthesis and characterization of nanoscale-hydroxyapatite-copper for antimicrobial activity towards bone tissue engineering applications, J. Biomed. Nanotechnol., 2010, vol. 6, pp. 333–341.

    Article  CAS  Google Scholar 

  2. Kumar, R.V., Mastai, Y., Diamant, Y., and Gedanken, A., Sonochemical synthesis of amorphous Cu and nanocrystalline Cu2O embedded in a polyaniline matrix, J. Mater. Chem., 2001, vol. 11, pp. 1209–1213.

    Article  CAS  Google Scholar 

  3. Bogoslovskaya, O.A., Sizova, E.A., Polyakova, V.S., Miroshnikov, S.A., Leipunskii, I.O., Ol’khovskaya, I.P., and Glushchenko, N.N., Study of safety of copper particles introduction with different physical-chemical characteristics in the organism of animals, Vestn. Orenburg. Gos. Univ., 2009, no. 2, pp. 124–127.

    Google Scholar 

  4. Qi, L.M., Ma, J.M., and Shen, J.L., Synthesis of copper nanoparticles in nonionic water-in-oil microemulsions, J. Colloid Interface Sci., 1997, vol. 186, pp. 498–500.

    Article  CAS  Google Scholar 

  5. Park, B.K., Jeong, S., Kim, D., Moon, J., Lim, S., and Kim, J.S., Synthesis and size control of monodisperse copper nanoparticles by polyol method, J. Colloid Interface Sci., 2007, vol. 311, pp. 417–424.

    Article  CAS  Google Scholar 

  6. Yurkov, G.Yu., Kozinkin, A.V., Nedoseikina, T.I., Shuvaev, A.T., Vlasenko, V.G., Gubin, S.P., and Kosobudskii, I.D., Copper nanoparticles in a polyethylene matrix, Inorg. Mater., 2001, vol. 37, pp. 997–1001.

    Article  CAS  Google Scholar 

  7. Yurkov, G.Yu., Baranov, D.A., Kozinkin, A.V., Nedoseikina, T.I., Koksharov, Yu.A., and Gubin, S.P., Copper nanoparticles on the surface of ultradispersed polytetrafluoroethylene nanograins, Russ. J. Inorg. Chem., 2006, vol. 51, pp. 170–176.

    Article  Google Scholar 

  8. Lee, Y., Choi, J.R., Lee, K.J., Stott, N.E., and Kim, D., Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjetprinted electronic, Nanotecnology, 2008, vol. 19, pp. 415–425.

    Google Scholar 

  9. Grouchko, M., Kamyshny, A., Ben-Ami, K., and Magdassi, S., Synthesis of copper nanoparticles catalyzed by pre-formed silver nanoparticles, J. Nanopart. Res., 2009, vol. 11, pp. 713–716.

    Article  CAS  Google Scholar 

  10. Grace, M., Navin, Chand, N., and Bajpai, S.K., Copper alginate-cotton cellulose (CACC) fibers with excellent antibacterial properties, J. Eng. Fibers Fabrics, 2009, vol. 4, no. 3, pp. 24–35.

    CAS  Google Scholar 

  11. Kotel’nikova, N.E. and Mikhailidi, A.M., Modification of flax materials with copper particles, Khim. Rastit. Syr’ya, 2009, no. 3, pp. 43–48.

    Google Scholar 

  12. Zhang, W., Zhang, Y., Yan, J., Ji, Q., Huang, A., and Chu, P.K., Antimicrobial polyethylene with controlled copper release, J. Biomed. Mater. Res. A, 2007, vol. 83, pp. 838–849.

    Article  Google Scholar 

  13. Cioffi, N., Ditaranto, N., Torsi, L., Picca, R.A., Giglio, E.De., Sabbatini, L., Novello, L., Tantillo, G., Bleve-Zacheo, T., and Zambonin, P.G., Synthesis, analytical characterization and bioactivity of Ag and Cu nanoparticles embedded in poly (vinyl methylketone) films, Anal. Bioanal. Chem., 2005, vol. 382, pp. 1912–1923.

    CAS  Google Scholar 

  14. Mirgorod, Yu.A., Postnikov, E.B., and Borshch, N.A., 13C NMR investigation of the structure of alkilammonium chloride micells in aqueous solutions, Russ. J. Struct. Chem., 2010, vol. 51, pp. 1111–1118.

    Article  CAS  Google Scholar 

  15. Egorova, E.M., Nanoparticles of metals in solutions: Biochemical synthesis and application, Nanotekhnologii, 2004, no. 1, pp. 15–26.

    Google Scholar 

  16. Milanovskii, A.G. and Kats, M.B., RF Patent 2118174, 1998.

  17. Efimov, K.M. and Kitajtsev, B.A., RF Patent 2372943, 2009.

  18. Carrington, A. and McLachlan, A.D., Introduction to Magnetic Resonance with applications to Chemistry and Chemical Physics, 3rd ed., London: Chapman and Hall, 1979.

    Google Scholar 

  19. Al’tshuller, S.A. and Kozyrev, B.M., Elektronnyi paramagnitnyi rezonans soedinenii elementov promezhutochnykh grupp (Electronic Paramagnetic Resonance of Compounds of Elements of Intermediate Groups), Moscow: Nauka, 1972.

    Google Scholar 

  20. Abragam, A. and Blini, B., Electron Paramagnetic Resonance of Transition Ions, Oxford: Oxford Univ., 1970.

    Google Scholar 

  21. Wertz, J.E. and Bolton, J.R., Electron Spin Resonance. Tneory and Practical Applications, New York: McGraw-Hill, 1972.

    Google Scholar 

  22. de Jongh, L.J. and Miedema, A.R., Experiments on simple magnetic model systems, Adv. Phys., 1974, vol. 23, pp. 1–259.

    Article  Google Scholar 

  23. Steiner, M., Villain, J., and Windsor, C.G., Theoretical and experimental studies on one-dimensional magnetic systems, Adv. Phys., 1976, vol. 25, pp. 87–209.

    Article  CAS  Google Scholar 

  24. Carlin, R.L., Magnetochemistry Berlin: Springer-Verlag, 1986.

    Book  Google Scholar 

  25. Maple, M.B., High-temperature superconductivity, J. Magn. Magn. Mater., 1998, vol. 177–181, pp. 18–30.

    Article  Google Scholar 

  26. Domb, C. and Lebowitz, L.J., Phase Transitions and Critical Phenomena, New York: Academic, 1983, vol. 8.

    Google Scholar 

  27. Hendriksen, P.V. and Linderoth, S., Finite-size modifications of the magnetic properties of clusters, Phys. Rev. B: Condens. Matter, 1993, vol. 48, pp. 7259–7273.

    Article  CAS  Google Scholar 

  28. Sato, S. and Ohshima, K., Antiferromagnetic transition temperature of MnO ultrafine particle, J. Phys. Soc. Jpn., 1995, vol. 64, pp. 944–950.

    Article  Google Scholar 

  29. Sato, S., Ohshima, K., Sakai, M., and Bandow, S., Magnetic property of CoO ultrafine particle, Surf. Rev. Lett., 1996, vol. 3, pp. 109–113.

    Article  Google Scholar 

  30. Gazeau, F., Shilov, V., Bacri, J.C., Dubois, E., Gendron, F., Perzynski, R., Raikher, Yu.L., and Stepanov, V.I., Magnetic resonance of nanoparticles in a ferrofluid: Evidence of thermofluctuational effects, J. Magn. Magn. Mater., 1999, vol. 202, pp. 535–546.

    Article  CAS  Google Scholar 

  31. Kliava, J. and Berger, R., Size and shape distribution of magnetic nanoparticles in disordered systems: Computer simulations of superparamagnetic resonance spectra, J. Magn. Magn. Mater., 1999, vol. 205, pp. 328–342.

    Article  CAS  Google Scholar 

  32. Winter, J., Magnetic Resonance in Metals, Oxford: Clarendon Press, 1971.

    Google Scholar 

  33. Mehran, F. and Anderson, P.W., The curious case of the Cu2+ electron paramagnetic resonance in high-Tc superconductors and related antiferromagnets, Solid State Commun., 1989, vol. 71, pp. 29–31.

    Article  CAS  Google Scholar 

  34. Kindo, K., Honda, M., Kohashi, T., and Date, M., Electron spin resonance in cupric oxide, J. Phys. Soc. Jpn., 1990, vol. 59, pp. 2332–2335.

    Article  CAS  Google Scholar 

  35. Shevchenko, O.V., Eidel’shtein, M.V., and Stepanova, M.N., Metallo-beta-lactamases: Importance and detection methods in gram-negative nonfermenting bacteria, Klin. Mikrobiol. Antimikrob. Khimioter., 2007, vol. 9, pp. 211–218.

    Google Scholar 

  36. Babushkina, I.V., Nanoparticles of metals in treatment of the experimental purulent wounds, Saratov. Nauchn.-Med. Zh., 2011, vol. 7, pp. 530–533.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Biryukova.

Additional information

Original Russian Text © M.I. Biryukova, G.Yu. Yurkov, S.A. Syrbu, N.A. Taratanov, 2013, published in Materialovedenie, 2013, No. 7, pp. 33–39.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biryukova, M.I., Yurkov, G.Y., Syrbu, S.A. et al. Synthesis and structure of copper nanoparticles and their antiinfection properties. Inorg. Mater. Appl. Res. 5, 54–60 (2014). https://doi.org/10.1134/S2075113314010031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113314010031

Keywords

Navigation