Skip to main content
Log in

Structure and Magnetic Properties of Nd–Fe–B Magnets Prepared from DyH2-Containing Powder Mixtures

  • Composite Materials
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Sintered Nd–Pr–Dy–Fe–B permanent magnets were prepared by a powder blending technique using mixtures consisting of strip-casting alloy (wt %) 24.0 Nd, 6.5 Pr, 0.5 Dy, 1.0 B, 0.2 Al, 65.8 Fe and 2 wt % DyH2 dysprosium hydride. After optimum heat treatment of magnets at 500°C for 1 h, the following hysteretic characteristics were reached: remanence B r = 1.29 T; coercive force j H c = 1309 kA/m; critical field H k = 1220 kA/m; and the maximum energy product (BH)max = 322 kJ/m3. The characteristic peculiarity of the magnets prepared from hydride-containing power mixtures is the stability of hysteretic properties in the course of subsequent stepped annealings or progressive heatings at temperatures of 250–500°C for, in total, more than 20 h. Conditions of low-temperature annealings resulting in the degradation and subsequent restoration of hysteretic properties of magnets are determined. The evolution of the microstructure and phase composition of magnets in the course of heat treatments was studied by X-ray diffraction analysis and scanning electron microscopy, and the correlation between the structural changes and hysteretic properties of magnets is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hiraga, K., Hirabayashi, M., Sagawa, M., and Matsuura, Y., A study of microstructures of grain boundaries in sintered Fe77Nd15B8 permanent magnet by highresolution electron microscopy, Jpn. J. Appl. Phys., 1985, vol. 24, no. 6, pp. 699–703.

    Article  CAS  Google Scholar 

  2. Seperhri-Amin, H., Ohkubo, T., and Hono, K., The mechanism of coercivity enhancement by the grain boundary diffusion process of Nd–Fe–B sintered magnets, Acta Mater., 2013, vol. 61, no. 6, pp. 1982–1990.

    Article  CAS  Google Scholar 

  3. Straumal, B.B., Kucheev, Yu.O., Yatskovskaya, I.L., Mogilnikova, I.V., Schutz, G., Nekrasov, A.N., and Baretzky, B., Grain boundary wetting in the NdFeBbased hard magnetic alloys, J. Mater. Sci., 2012, vol. 47, no. 24, pp. 8352–8359.

    Article  CAS  Google Scholar 

  4. Withey, P.A., Devlin, E.J., Abell, J.S., and Harris, I.R., Ageing effects in Nd(Dy)Fe(Nb)B alloys magnets, J. Magn. Magn. Mater., 1989, vol. 80, no. 1, pp. 67–70.

    Article  CAS  Google Scholar 

  5. Lukin, A.A., Kolchugina, N.B., Burkhanov, G.S., Klyueva, N.E., and Skotnicova, K., Role of terbium hydride additions in the formation of microstructure and magnetic properties of sintered Nd–Pr–Dy–Fe–B magnets, Inorg. Mater.: Appl. Res., 2013, vol. 4, no. 3, pp. 256–259.

    Article  Google Scholar 

  6. Tokunada, M., Kogure, H, Endoh, M., and Harada, H., Improvement of thermal stability of Nd–Dy–Fe–Co–B sintered magnets by additions of Al, Nb, and Ge, IEEE Trans. Magn., 1987, vol. 23, no. 5, pp. 2287–2289.

    Article  Google Scholar 

  7. Lukin, A.A., Influence of heat treatment parameters on properties of NdRFeMCoB sintered magnets, J. Iron Steel Res. Int., 2006, vol. 13, supp. 1, pp. 331–335.

    Article  Google Scholar 

  8. Kononenko, A.S., Fedyakin, V.V., Sergeev, V.V., and Vol’skii, A.A., Effect of heat treatment on Hci of Nd–Fe–B permanent magnets, Izv. Akad. Nauk SSSR, Met., 1986, no. 2, pp. 182–184.

    Google Scholar 

  9. Eckert, D., Hinz, D., Handstein, A., and Schneider, J., Thermal ageing and coercivity of sintered Nd–Fe–B magnets, Phys. Status Solidi A, 1987, vol. 101, pp. 563–566.

    Article  CAS  Google Scholar 

  10. Lukin, A.A. and Szymura, S., Peculiarities of forming of coercive force by heat treatment processes of sintered Nd–Fe–B type magnets, Arch. Mater. Sci., 2000, vol. 21, no. 1, pp. 21–30.

    CAS  Google Scholar 

  11. Lukin, A.A., Influence of heterogeneity of chemical composition and texture on magnetic properties of sintered magnets (Nd, Dy, Tb)–(Fe, Ti)–B, Metally, 1996, no. 2, pp. 131–137.

    Google Scholar 

  12. Menushenkov, V.P. and Savchenko, A.G., Heat treatment, microstructure and coercivity of Nd–Fe–B based sintered magnets, Proc. Russian-Japanese Seminar “Material Research and Metallurgy. Advanced Technologies and Equipment,” Moscow, March 25, 2003, Kozhitov, L.V. Ed. Moscow: Mosk. Gos. Tekh. Univ., 2003, pp. 127–146.

    Google Scholar 

  13. Kim, H.-S., Kim, S.H., Kim, J.W., Lee, Y.J., Kim, D.-G., and Kim, Y.D., Magnetic properties of high coercivity Nd23Dy10Fe64TM2B1 sintered magnets by a convergent heat treatment, Res. Chem. Intermed., 2010, vol. 36, nos. 6–7, pp. 859–866.

    Article  CAS  Google Scholar 

  14. Akiya, T., Sasaki, T.T., Ohkubo, T., Une, Y., Sagawa, M., Kato, H., and Hono, K., The origin of the coercivity reduction of Nd–Fe–B sintered magnet annealed below an optimal temperature, J. Magn. Magn. Mater., 2013, vol. 342, pp. 4–10.

    Article  CAS  Google Scholar 

  15. Woodcock, T.G., Bittner, F., Mix, T., Mueller, K.-H., Sawatzki, S., and Gutfleisch, O., On the reversible and fully repeatable increase in coercive field of sintered Nd–Fe–B magnets following post sinter annealing, J. Magn. Magn. Mater., 2014, vol. 360, pp. 157–164.

    Article  CAS  Google Scholar 

  16. Woodcock, T.G. and Gutfleisch, O., Multi-phase EBSD mapping and local texture analysis in NdFeB synthered magnets, Acta Mater., 2011, vol. 59, pp. 1026–1030.

    Article  CAS  Google Scholar 

  17. Matsuura, M., Goto, R., Tezuka, N., and Sugimoto, S., Influence of Nd oxide phase on the coercivity of Nd–Fe–B thin films, Mater. Trans., 2010, vol. 51, pp. 1901–1904.

    Article  CAS  Google Scholar 

  18. Vial, F., Joly, F., Nevalainen, E., Sagawa, M., Hiraga, K., and Park, K.T., Improvement of coercivity of sintered NdFeB permanent magnets by heat treatment, J. Magn. Magn. Mater., 2002, vol. 242–245, pp. 1329–1334.

    Article  Google Scholar 

  19. Yan, G., McGuiness, P.J., Farr, J.P.G., and Harris, I.R., Optimization of the processing of Nd–Fe–B with dysprosium addition, J. Alloys Compd., 2010, vol. 491, pp. L20–L24.

    Article  CAS  Google Scholar 

  20. Malfliet, A., Cacciamani, G., Lebrun, N., and Rogl, P., Boron–iron–neodymium, in Landolt-Börnstein–Group IV: Physical Chemistry, Vol. 11: Ternary Alloy Systems. Phase Diagrams, Crystallographic and Thermodynamic Data, Subvolume D: Iron Systems, Part 1: Selected Systems from Al–B–Fe to C–Co–Fe, Effenberg, G. and Ilyenko, S., Eds., Berlin: Springer-Verlag, 2008, pp. 482–511.

    Google Scholar 

  21. Koshkidko, Yu.S., Skotnikova, K., Zivotsky, O., Kursa, M., Burkhanov, G.S., Kolchugina, N.B., Lukin, A.A., Dormidontov, A.G., Sitnov, V.V., and Cwik, J., Evolution of the phase composition of (Nd, Pr, Dy)–Fe–B magnets during stepped annealing, Proc. Int. Conf. on Metallurgy and Materials, May 21–23, 2014, Brno, Czech Republic, Tanger, 2015, pp. 1416–1420.

    Google Scholar 

  22. Burkhanov, G.S., Semenova, E.M., Karpenkov, D.Yu., Lukin, A.A., Kolchugina, N.B., Cwik, J., Rogacki, K., Kursa, M., and Skotnicova, K., Application of duplex sintering for improvement of energy parameters of thermostable Pr–Dy–Fe–Co–B–Cu–Al permanent magnets, Perspekt. Mater., 2016, no. 11, pp. 39–47.

    Google Scholar 

  23. Yang, N., Dennis, K.W., McCallum, R.W., Kramer, M.J., Zhang, Y., and Lee, P.L., Role of the Fe on the invar anomaly in R2Fe14B compounds, J. Appl. Phys., 2003, vol. 93, no. 10, pp. 7990–7992.

    Article  CAS  Google Scholar 

  24. Andreev, A.V., Deryagin, A.V., Zadvorkin, S.M., and Terent’ev, S.V., Thermal extension and spontaneous magnetostriction of R2Fe14B (R–Y, Nd, Sm) compounds, Sov. Phys. Solid State, 1985, vol. 27, no. 6, pp. 987–989.

    Google Scholar 

  25. Buschow, K.H.J., Invar effect in R2Fe14B compounds (R–La, Ce, Nd, Sm, Gd, Er), J. Less-Common Met., 1986, vol. 118, pp. 349–353.

    Article  CAS  Google Scholar 

  26. Andreev, A.V. and Bartashevich, M.I., Spontaneous magnetostriction of Y2(Fe1–xCox)14B single crystals, Fiz. Tverd. Tela, 1990, vol. 32, no. 4, pp. 1140–1143.

    CAS  Google Scholar 

  27. Andreev, A.V. and Bartashevich, M.I., Spontaneous magnetostriction of the Y2(Fe1–x)Cox)14B intermetallic compounds, J. Less-Common Met., 1990, vol. 162, pp. 33–37.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Burkhanov.

Additional information

Original Russian Text © G.S. Burkhanov, N.B. Kolchugina, A.A. Lukin, Yu.S. Koshkidko, J. Cwik, K. Skotnicova, V.V. Sitnov, 2017, published in Fizika i Khimiya Obrabotki Materialov, 2017, No. 5, pp. 44–54.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkhanov, G.S., Kolchugina, N.B., Lukin, A.A. et al. Structure and Magnetic Properties of Nd–Fe–B Magnets Prepared from DyH2-Containing Powder Mixtures. Inorg. Mater. Appl. Res. 9, 509–516 (2018). https://doi.org/10.1134/S2075113318030115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318030115

Keywords

Navigation