Skip to main content
Log in

Genetics of aging and longevity

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Lifespan is a complex quantitative trait, which makes a significant contribution to Darwinian fitness. The understanding of the genetic structure of longevity is a fundamental problem of the evolution of ontogeny, evolutionary genetics, and molecular gerontology. Under optimal conditions, lifespan is determined by the aging rate. Aging is made up of interrelated processes that occur at the organismal, tissue, cellular, molecular, and genetic levels. The disturbances touch homeostasis maintenance, metabolic reactions, and transduction of intra and intercellular signals. Its other consequences are the accumulation of senescent cells, damaged organelles, and macromolecules; epigenetic changes; and genetic instability. This review summarizes the current knowledge of the major genetic determinants of longevity and aging. It considers genes and signaling pathways that regulate stress response, metabolism, the growth of cells and the body, preservation of genome and proteome integrity, qualitative and quantitative mitochondrion composition, inflammatory response, apoptosis, selection of viable cells, and circadian rhythms. The redistribution of energy resources from one pathway to another can induce or inhibit the “longevity program,” improving stress resistance and slowing down senescence. Approaches to slowing aging and achieving healthy longevity are outlined based on the analysis of the geroprotective potential of the regulation of the examined genes. These trends include heterochromatin recovery; retrotransposition suppression; aneuploidy elimination; restoration of lysosome acidity; telomere extension; suppression of chronic inflammation; elimination of protein crosslinks; elimination of senescent cells; recovery of NAD+ levels; inhibition of mTOR, S6K, TGFβ, and AT1; and controlled activation of the longevity program genes FOXO, AMPK, PGC1α, and NRF2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, A.S., Kawahara, T.L., Segal, E., and Chang, H.Y, Reversal of aging by NFkappaB blockade, Cell Cycle, 2008, vol. 7, no. 5, pp. 556–559.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed, S., Passos, J.F., Birket, M.J., Beckmann, T., Brings, S., Peters, H., Birch-Machin, M.A., von Zglinicki, T., and Saretzki, G, Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress, J. Cell Sci., 2008, vol. 121, pp. 1046–1053. doi 10.1242/jcs.019372

    Article  CAS  PubMed  Google Scholar 

  • Åkerfelt, M., Morimoto, R.I., and Sistonen, L, Heat shock factors: Integrators of cell stress, development and lifespan, Nat. Rev. Mol. Cell Biol., 2010, vol. 11, no. 8, pp. 545–555.

    Article  CAS  PubMed  Google Scholar 

  • Amsellem, V., Gary-Bobo, G., Marcos, E., Maitre, B., Chaar, V., Validire, P., Stern, J.B., Noureddine, H., Sapin, E., Rideau, D., Hue, S., Le Corvoisier, P., Le Gouvello, S., Dubois-Rande, J.L., Boczkowski, J., and Adnot, S, Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease, Am. J. Resp. Crit. Care, 2011, vol. 184, no. 12, pp. 1358–1366. doi 10.1164/rccm.201105-0802OC

    Article  CAS  Google Scholar 

  • Anderson, R. and Prolla, T., PGC-1a in aging and antiaging interventions, BBA-Gen. Subj., 2009, vol. 1790, no. 10, pp. 1059–1066.

    Article  CAS  Google Scholar 

  • Anisimov, V.N. and Bartke, A, The key role of growth hormone- insulin-IGF-1 signaling in aging and cancer, Crit. Rev. Oncol. Hematol., 2013, vol. 87, no. 3, pp. 201–223. doi 10.1016/j.critrevonc.2013.01.005

    Article  PubMed Central  PubMed  Google Scholar 

  • Arai, Y., Takayama, M., Abe, Y., and Hirose, N, Adipokines and aging, J. Atheroscler. Thromb., 2011, vol. 18, no. 7, pp. 545–550.

    Article  CAS  PubMed  Google Scholar 

  • Argmann, C., Dobrin, R., Heikkinen, S., Auburtin, A., Pouilly, L., Cock, T.-A., Koutnikova, H., Zhu, J., Schadt, E.E., and Auwerx, J., PPAR?2 is a key driver of longevity in the mouse, PLoS Genet., 2009, vol. 5, no. 12.

  • Argon, Y. and Gidalevitz, T. Candidate Genes that Affect Aging through Protein Homeostasis Longevity Genes, New York: Springer, 2015, pp. 45–72.

    Google Scholar 

  • Aschner, Y. and Downey, G.P, Transforming growth factor- beta: master regulator of the respiratory system in health and disease, Am. J. Respir. Cell Mol. Biol., 2016. doi 10.1165/rcmb.2015-0391TR

    Google Scholar 

  • Ayyadevara, S., Bharill, P., Dandapat, A., Hu, C., Khaidakov, M., Mitra, S, Shmookler Reis, R.J. and Mehta, J.L., Aspirin inhibits oxidant stress, reduces age-associated functional declines, and extends lifespan of Caenorhabditis elegans, Antioxid. Redox. Sign, 2013, vol. 18, no. 5, pp. 481–490. doi 10.1089/ars.2011.4151

    Article  CAS  Google Scholar 

  • Baker, D.J., Childs, B.G., Durik, M., Wijers, M.E., Sieben, C.J., Zhong, J., Saltness, R.A., Jeganathan, K.B., Verzosa, G.C., Pezeshki, A., Khazaie, K., Miller, J.D., and Van Deursen, J.M, Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan, Nature, 2016, vol. 530, no. 7589, pp. 184–189. doi 10.1038/nature16932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baker, D.J., Wijshake, T., Tchkonia, T., LeBrasseur, N.K., Childs, B.G., Van De Sluis, B., Kirkland, J.L., and Van Deursen, J.M, Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders, Nature, 2011, vol. 479, no. 7372, pp. 232–236. doi 10.1038/nature10600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bar, C, Bernardes De Jesus, B., Serrano, R., Tejera, A., Ayuso, E., Jimenez, V., Formentini, I., Bobadilla, M., Mizrahi, J., De Martino, A., Gomez, G., Pisano, D., Mulero, F., Wollert, K.C., Bosch, F., and Blasco, M.A., Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction, Nat. Commun., 2014, vol. 5, p. 5863. doi 10.1038/ncomms6863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basso, N., Paglia, N., Stella, I., De Cavanagh, E.M., Ferder, L., del Rosario Lores Arnaiz, M., and Inserra, F, Protective effect of the inhibition of the renin-angiotensin system on aging, Regul. Peptides, 2005, vol. 128, no. 3, pp. 247–252. doi 10.1016/j.regpep.2004.12.027

    Article  CAS  Google Scholar 

  • Benigni, A., Corna, D., Zoja, C., Sonzogni, A., Latini, R., Salio, M., Conti, S., Rottoli, D., Longaretti, L., Cassis, P., Morigi, M., Coffman, T.M., and Remuzzi, G, Disruption of the Ang II type 1 receptor promotes longevity in mice, J. Clin. Invest., 2009, vol. 119, no. 3, pp. 524–530. doi 10.1172/JCI36703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benigni, A., Orisio, S., Noris, M., Iatropoulos, P., Castaldi, D., Kamide, K., Rakugi, H., Arai, Y., Todeschini, M., Ogliari, G., Imai, E., Gondo, Y., Hirose, N., Mari, D., and Remuzzi, G, Variations of the angiotensin II type 1 receptor gene are associated with extreme human longevity, Age (Dordr.), 2013, vol. 35, no. 3, pp. 993–1005. doi 10.1007/s11357-012-9408-8

    Article  CAS  Google Scholar 

  • Bernardes De Jesus, B., Vera, E., Schneeberger, K., Tejera, A.M., Ayuso, E., Bosch, F., and Blasco, M.A, Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer, EMBO Mol. Med., 2012, vol. 4, no. 8, pp. 691–704. doi 10.1002/emmm.201200245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bian, A., Neyra, J.A., Zhan, M., and Hu, M.C, Klotho, stem cells, and aging, Clin. Interv. Aging, 2015, vol. 10, p. 1233.

    Google Scholar 

  • Biteau, B., Karpac, J., Hwangbo, D., and Jasper, H, Regulation of Drosophila lifespan by JNK signaling, Exp. Gerontol., 2011, vol. 46, no. 5, pp. 349–354. doi 10.1016/j.exger.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  • Biteau, B., Karpac, J., Supoyo, S., Degennaro, M., Lehmann, R., and Jasper, H, Lifespan extension by preserving proliferative homeostasis in Drosophila, PLoS Genet., 2010, vol. 6, no. 10. doi 10.1371/journal.pgen.1001159

  • Bitto, A., Wang, A.M., Bennett, C.F., and Kaeberlein, M, Biochemical genetic pathways that modulate aging in multiple species, Cold Spring Harb. Persp. Med., 2015, vol. 5, no. 11. doi 10.1101/cshperspect.a025114

  • Bluher, M., Kahn, B.B., and Kahn, C.R, Extended longevity in mice lacking the insulin receptor in adipose tissue, Science, 2003, vol. 299, no. 5606, pp. 572–574. doi 10.1126/science.1078223

    Article  CAS  PubMed  Google Scholar 

  • Boccardi, V., Pelini, L., Ercolani, S., Ruggiero, C., and Mecocci, P, From cellular senescence to Alzheimer’s disease: The role of telomere shortening, Ageing Res. Rev, 2015, vol. 22, pp. 1–8. doi 10.1016/j.arr.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  • Brooks, C.L. and Gu, W, How does SIRT1 affect metabolism, senescence and cancer?, Nat. Rev. Cancer, 2009, vol. 9, no. 2, pp. 123–128.

    Article  CAS  Google Scholar 

  • Broom, L., Marinova-Mutafchieva, L., Sadeghian, M., Davis, J.B., Medhurst, A.D., and Dexter, D.T, Neuroprotection by the selective iNOS inhibitor GW274150 in a model of Parkinson disease, Free Radic. Biol. Med., 2011, vol. 50, no. 5, pp. 633–640. doi 10.1016/j.freeradbiomed. 2010.12.026

    Article  CAS  PubMed  Google Scholar 

  • Budanov, A.V. and Karin, M., p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling, Cell, 2008, vol. 134, no. 3, pp. 451–460. doi 10.1016/j.cell.2008.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, W., He, J.C., Zhu, L., Chen, X., Wallenstein, S., Striker, G.E., and Vlassara, H, Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: Association with increased AGER1 expression, Am. J. Pathol., 2007, vol. 170, no. 6, pp. 1893–1902. doi 10.2353/ajpath.2007.061281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantó, C. and Auwerx, J, Calorie restriction: Is AMPK a key sensor and effector?, Physiology, 2011, vol. 26, no. 4, pp. 214–224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carrard, G., Bulteau, A.-L., Petropoulos, I., and Friguet, B, Impairment of proteasome structure and function in aging, Int. J. Biochem. Cell Biol., 2002, vol. 34, no. 11, pp. 1461–1474.

    Article  CAS  PubMed  Google Scholar 

  • Carrieri, G., Marzi, E., Olivieri, F., Marchegiani, F., Cavallone, L., Cardelli, M., Giovagnetti, S., Stecconi, R., Molendini, C., Trapassi, C., De Benedictis, G., Kletsas, D., and Franceschi, C, The G/C915 polymorphism of transforming growth factor beta1 is associated with human longevity: A study in italian centenarians, Aging Cell, 2004, vol. 3, no. 6, pp. 443–448. doi 10.1111/j.1474-9728.2004.00129.x

    Article  CAS  PubMed  Google Scholar 

  • Cha, D.R., Han, J.Y., Su, D.M., Zhang, Y., Fan, X., Breyer, M.D., and Guan, Y, Peroxisome proliferator-activated receptor-alpha deficiency protects aged mice from insulin resistance induced by high-fat diet, Am. J. Nephrol., 2007, vol. 27, no. 5, pp. 479–482.

    Article  CAS  PubMed  Google Scholar 

  • Cha, Y.I. and Kim, H.-S., Emerging role of sirtuins on tumorigenesis: Possible link between aging and cancer, BMB Rep., 2013, vol. 46, no. 9, pp. 429–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, H.C. and Guarente, L., SIRT1 and other sirtuins in metabolism, Trends Endocrin. Met., 2014, vol. 25, no. 3, pp. 138–145. doi 12.001 doi 10.1016/j.tem.2013

    Article  CAS  Google Scholar 

  • Chen, D. and Guarente, L., SIR2: A potential target for calorie restriction mimetics, Trends Mol. Med., 2007, vol. 13, no. 2, pp. 64–71.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Zheng, X., and Zheng, Y., Age-associated loss of lamin-B leads to systemic inflammation and gut hyperplasia, Cell, 2014, vol. 159, no. 4, pp. 829–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong, J.K., Zhang, F., Chua, P.J., Bay, B.H., Thorburn, A., and Virshup, D.M, Casein kinase 1alpha-dependent feedback loop controls autophagy in RAS-driven cancers, J. Clin. Invest., 2015, vol. 125, no. 4, pp. 1401–1418. doi 10.1172/JCI78018

    Article  PubMed  PubMed Central  Google Scholar 

  • Chondrogianni, N., Georgila, K., Kourtis, N., Tavernarakis, N., and Gonos, E.S., 20S proteasome activation promotes life span extension and resistance to proteotoxicity in caenorhabditis elegans, The FASEB J., 2015, vol. 29, no. 2, pp. 611–622.

    Article  CAS  PubMed  Google Scholar 

  • Chondrogianni, N., Petropoulos, I., Grimm, S., Georgila, K., Catalgol, B., Friguet, B., Grune, T., and Gonos, E.S, Protein damage, repair and proteolysis, Mol. Aspects Med., 2014, vol. 35, pp. 1–71.

    Article  CAS  PubMed  Google Scholar 

  • Clempson, A.M., Pollott, G.E., Brickell, J.S., Bourne, N.E., Munce, N., and Wathes, D.C, Polymorphisms in the autosomal genes for mitochondrial function TFAM and UCP2 are associated with performance and longevity in dairy cows, Animal, 2011, vol. 5, no. 9, pp. 1335–1343. doi 10.1017/S1751731111000346

    Article  CAS  PubMed  Google Scholar 

  • Codd, V., Nelson, C.P., Albrecht, E., Mangino, M., Deelen, J., Buxton, J.L., Hottenga, J.J., Fischer, K., Esko, T., and Surakka, I, Identification of seven loci affecting mean telomere length and their association with disease, Nat. Genet., 2013, vol. 45, no. 4, pp. 422–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, H.Y., Miller, C., Bitterman, K.J., Wall, N.R., Hekking, B., Kessler, B., Howitz, K.T., Gorospe, M., De Cabo, R., and Sinclair, D.A, Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase, Science, 2004, vol. 305, no. 5682, pp. 390–392.

    Article  CAS  PubMed  Google Scholar 

  • Corpet, A. and Stucki, M, Chromatin maintenance and dynamics in senescence: A spotlight on SAHF formation and the epigenome of senescent cells, Chromosoma, 2014, vol. 123, no. 5, pp. 423–436. doi 10.1007/s00412-014-0469-6

    Article  PubMed  Google Scholar 

  • Costacou, T., Zgibor, J.C., Evans, R.W., Otvos, J., Lopes-Virella, M.F., Tracy, R.P., and Orchard, T.J, The prospective association between adiponectin and coronary artery disease among individuals with type 1 diabetes. The Pittsburgh epidemiology of diabetes complications study, Diabetologia, 2005, vol. 48, no. 1, pp. 41–48. doi 10.1007/s00125- 004-1597-y

    Article  CAS  PubMed  Google Scholar 

  • Dërmaku-Sopjani, M., Kolgeci, S., Abazi, S., and Sopjani, M, Significance of the anti-aging protein Klotho, Mol. Memb. Biol., 2013, vol. 30, no. 8, pp. 369–385.

    Article  CAS  Google Scholar 

  • De Cavanagh, E.M., Inserra, F., and Ferder, L., Angiotensin IIblockade: How its molecular targets may signal to mitochondria and slow aging. Coincidences with calorie restriction and mTOR inhibition, Am. J. Physiol. Heart Circ. Physiol., 2015, vol. 309, no. 1, pp. H15–H44. doi 10.1152/ajpheart.00459.2014

  • Demontis, F. and Perrimon, N., FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging, Cell, 2010, vol. 143, no. 5, pp. 813–825. doi 10.1016/j.cell.2010.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demontis, F., Patel, V.K., Swindell, W.R., and Perrimon, N, Intertissue control of the nucleolus via a myokine-dependent longevity pathway, Cell Rep., 2014, vol. 7, no. 5, pp. 1481–1494. doi 10.1016/j.celrep.2014.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, J., Sackmann-Sala, L., and Kopchick, J.J, Mouse models of growth hormone action and aging: A proteomic perspective, Proteomics, 2013, vol. 13, nos. 3–4, pp. 674–685. doi 10.1002/pmic.201200271

    Article  CAS  PubMed  Google Scholar 

  • Dominy, J.E. and Puigserver, P, Mitochondrial biogenesis through activation of nuclear signaling proteins, Cold Spring Harb. Persp. Biol., 2013, vol. 5, no. 7.

  • Efeyan, A., Zoncu, R., and Sabatini, D.M, Amino acids and mTORC1: From lysosomes to disease, Trends Mol. Med., 2012, vol. 18, no. 9, pp. 524–533. doi 10.1016/j.molmed.2012.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, E.F., Scheibye-Knudsen, M., Chua, K.F., Mattson, M.P., Croteau, D.L., and Bohr, V.A, Nuclear DNA damage signalling to mitochondria in ageing, Nat. Rev. Mol. Cell Biol., 2016. doi 10.1038/nrm.2016.14

    Google Scholar 

  • Feng, Z., Lin, M., and Wu, R, The regulation of aging and longevity: A new and complex role of p53, Genes Cancer, 2011, vol. 2, no. 4, pp. 443–452. doi 10.1177/1947601911410223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming, T.H., Humpert, P.M., Nawroth, P.P., and Bierhaus, A, Reactive metabolites and AGE/RAGE-mediated cellular dysfunction affect the aging process: A mini-review, Gerontology, 2011, vol. 57, no. 5, pp. 435–443. doi 10.1159/000322087

    CAS  PubMed  Google Scholar 

  • Frippiat, C., Dewelle, J., Remacle, J., and Toussaint, O, Signal transduction in H2O2-induced senescence-like phenotype in human diploid fibroblasts, Free Radic. Biol. Med., 2002, vol. 33, no. 10, pp. 1334–1346.

    Article  CAS  PubMed  Google Scholar 

  • Gallot, Y.S., Durieux, A.-C., Castells, J., Desgeorges, M.M., Vernus, B., Plantureux, L., Rémond, D., Jahnke, V.E., Lefai, E., and Dardevet, D, Myostatin gene inactivation prevents skeletal muscle wasting in cancer, Cancer Res., 2014, vol. 74, no. 24, pp. 7344–7356.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Martinez, J.M. and Alessi, D.R., mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum-and glucocorticoid-induced protein kinase 1 (SGK1), Biochem. J., 2008, vol. 416, no. 3, pp. 375–385. doi 10.1042/BJ20081668

    Article  CAS  PubMed  Google Scholar 

  • Garg, A. and Agarwal, A.K, Lipodystrophies: Disorders of adipose tissue biology, Biochem. Bioph. Acta, 2009, vol. 1791, no. 6, pp. 507–513. doi 10.1016/j.bbalip.2008.12.014

    CAS  Google Scholar 

  • Genabai, N.K., Ahmad, S., Zhang, Z., Jiang, X., Gabaldon, C.A., and Gangwani, L, Genetic inhibition of JNK3 ameliorates spinal muscular atrophy, Hum. Mol. Genet., 2015, vol. 24, no. 24, pp. 6986–7004. doi 10.1093/hmg/ddv401

    PubMed  PubMed Central  Google Scholar 

  • Goetz, R., Ohnishi, M., Ding, X., Kurosu, H., Wang, L., Akiyoshi, J., Ma, J., Gai, W., Sidis, Y., Pitteloud, N., Kuro, O.M., Razzaque, M.S., and Mohammadi, M, Klotho coreceptors inhibit signaling by paracrine fibroblast growth factor 8 subfamily ligands, Mol. Cell Biol., 2012, vol. 32, no. 10, pp. 1944–1954. doi 10.1128/MCB.06603-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goitre, L., Trapani, E., Trabalzini, L., and Retta, S.F, The Ras superfamily of small GTPases: The unlocked secrets, Methods Mol. Biol., 2014, vol. 1120, pp. 1–18. doi 10.1007/978-1-62703-791-4_1

    Article  CAS  PubMed  Google Scholar 

  • Green, S.J., Scheller, L.F., Marletta, M.A., Seguin, M.C., Klotz, F.W., Slayter, M., Nelson, B.J., and Nacy, C.A, Nitric oxide: Cytokine-regulation of nitric oxide in host resistance to intracellular pathogens, Immunol. Lett., 1994, vol. 43, nos. 1–2, pp. 87–94.

    Article  CAS  PubMed  Google Scholar 

  • Grube, K. and Burkle, A., Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span, Proc. Natl. Acad. Sci. U.S.A., 1992, vol. 89, no. 24, pp. 11759–11763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, J., Ryu, S., Moskowitz, D.M., Rothenberg, D., Leahy, D.J., Atzmon, G., Barzilai, N., and Suh, Y, Discovery of novel non-synonymous SNP variants in 988 candidate genes from 6 centenarians by target capture and nextgeneration sequencing, Mech. Ageing Dev., 2013, vol. 134, no. 10, pp. 478–485. doi 10.1016/j.mad.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  • Hannon, G.J. and Beach, D., p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest, Nature, 1994, vol. 371, no. 6494, pp. 257–261. doi 10.1038/371257a0

    Article  CAS  PubMed  Google Scholar 

  • Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J.-B., and Gao, Y., Genome-wide methylation profiles reveal quantitative views of human aging rates, Mol. Cell, 2013, vol. 49, no. 2, pp. 359–367.

    Article  CAS  PubMed  Google Scholar 

  • Harshman, L.G., Moore, K.M., Sty, M.A., and Magwire, M.M, Stress resistance and longevity in selected lines of Drosophila melanogaster, NeuroBiol. Aging, 1999, vol. 20, no. 5, pp. 521–529.

    Article  CAS  PubMed  Google Scholar 

  • Hart, R.W. and Setlow, R.B, Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species, Proc. Natl. Acad. Sci. U.S.A., 1974, vol. 71, no. 6, pp. 2169–2173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann, N., Reichwald, K., Wittig, I., Drose, S., Schmeisser, S., Luck, C., Hahn, C., Graf, M., Gausmann, U., Terzibasi, E., Cellerino, A., Ristow, M., Brandt, U., Platzer, M., and Englert, C, Mitochondrial DNA copy number and function decrease with age in the short-lived fish Nothobranchius furzeri, Aging Cell, 2011, vol. 10, no. 5, pp. 824–831. doi 10.1111/j.1474-9726.2011.00723.x

    Article  CAS  PubMed  Google Scholar 

  • He, C., Tsuchiyama, S.K., Nguyen, Q.T., Plyusnina, E.N., Terrill, S.R., Sahibzada, S., Patel, B., Faulkner, A.R., Shaposhnikov, M.V., Tian, R., Tsuchiya, M., Kaeberlein, M., Moskalev, A.A., Kennedy, B.K., and Polymenis, M, Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import, PLoS Genet., 2014, vol. 10, no. 12. 1004860 doi 10.1371/journal.pgen

    Google Scholar 

  • Hepple, R.T., Baker, D.J., McConkey, M., Murynka, T., and Norris, R, Caloric restriction protects mitochondrial function with aging in skeletal and cardiac muscles, Rejuv. Res., 2006, vol. 9, no. 2, pp. 219–222.

    Article  CAS  Google Scholar 

  • Herranz, D., Munoz-Martin, M., Canamero, M., Mulero, F., Martinez-Pastor, B., Fernandez-Capetillo, O., and Serrano, M., Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer, Nat. Commun., 2010, vol. 1, p. 3. doi 10.1038/ncomms1001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herskovits, A.Z. and Guarente, L., SIRT1 in neurodevelopment and brain senescence, Neuron, 2014, vol. 81, no. 3, pp. 471–483. doi 10.1016/j.neuron.2014.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollander, M.C., Sheikh, M.S., Bulavin, D.V., Lundgren, K., Augeri-Henmueller, L., Shehee, R., Molinaro, T.A., Kim, K.E., Tolosa, E., Ashwell, J.D., Rosenberg, M.P., Zhan, Q., Fernandez-Salguero, P.M., Morgan, W.F., Deng, C.X., and Fornace, A.J, Genomic instability in Gadd45a-deficient mice, Nat. Genet., 1999, vol. 23, no. 2, pp. 176–184. doi 10.1038/13802

    Article  CAS  PubMed  Google Scholar 

  • Hsu, A.L., Murphy, C.T., and Kenyon, C, Regulation of aging and age-related disease by DAF-16 and heat-shock factor, Science, 2003, vol. 300, no. 5622, pp. 1142–1145. doi 10.1126/science.1083701

    Article  CAS  PubMed  Google Scholar 

  • Hu, M.C., Shi, M., Zhang, J., Pastor, J., Nakatani, T., Lanske, B., Razzaque, M.S., Rosenblatt, K.P., Baum, M.G., and Kuro-o, M, Klotho: A novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule, The FASEB J., 2010, vol. 24, no. 9, pp. 3438–3450.

    Article  CAS  PubMed  Google Scholar 

  • Hulmi, J.J., Oliveira, B.M., Silvennoinen, M., Hoogaars, W.M., Pasternack, A., Kainulainen, H., and Ritvos, O, Exercise restores decreased physical activity levels and increases markers of autophagy and oxidative capacity in myostatin/activin-blocked mdx mice, Am. J. Physiol. Endoc. Metab., 2013, vol. 305, no. 2, pp. E171–E182.

  • Icreverzi, A., de la Cruz, A.F., Walker, D.W., and Edgar, B.A, Changes in neuronal CycD/Cdk4 activity affect aging, neurodegeneration, and oxidative stress, Aging Cell, 2015, vol. 14, no. 5, pp. 896–906. doi 10.1111/acel.12376

    CAS  PubMed  Google Scholar 

  • Jäger, S., Handschin, C., Pierre, J., and Spiegelman, B.M., AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1a, Proc. Natl Acad. Sci., 2007, vol. 104, no. 29, pp. 12017–12022.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jazwinski, S.M. and Yashin, A.I., Aging and health–a systems biology perspective. Introduction. Interdiscip. Top. Gerontol., 2015, vol. 40, pp. 7–12.

    Google Scholar 

  • Jewell, J.L., Russell, R.C., and Guan, K.L, Amino acid signalling upstream of mTOR, Nat. Rev. Mol. Cell Biol., 2013, vol. 14, no. 3, pp. 133–139. doi 10.1038/nrm3522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Junnila, R.K., List, E.O., Berryman, D.E., Murrey, J.W., and Kopchick, J.J, The GH/IGF-1 axis in ageing and longevity, Nat. Rev. Endocrinol., 2013, vol. 9, no. 6, pp. 366–376. doi 10.1038/nrendo.2013.67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanfi, Y., Naiman, S., Amir, G., Peshti, V., Zinman, G., Nahum, L., Bar-Joseph, Z., and Cohen, H.Y, The sirtuin SIRT6 regulates lifespan in male mice, Nature, 2012, vol. 483, no. 7388, pp. 218–221. doi 10.1038/nature10815

    Article  CAS  PubMed  Google Scholar 

  • Kanfi, Y., Peshti, V., Gozlan, Y.M., Rathaus, M., Gil, R., and Cohen, H.Y, Regulation of SIRT1 protein levels by nutrient availability, FEBS Lett., 2008, vol. 582, no. 16, pp. 2417–2423. doi 10.1016/j.febslet.2008.06.005

    Article  CAS  PubMed  Google Scholar 

  • Katewa, S.D., Akagi, K., Bose, N., Rakshit, K., Camarella, T., Zheng, X., Hall, D., Davis, S., Nelson, C.S., Brem, R.B., Ramanathan, A., Sehgal, A., Giebultowicz, J.M., and Kapahi, P, Peripheral circadian clocks mediate dietary restriction-dependent changes in lifespan and fat metabolism in Drosophila, Cell Metab., 2016, vol. 23, no. 1, pp. 143–154. doi 10.1016/j.cmet.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  • Katsimpardi, L., Litterman, N.K., Schein, P.A., Miller, C.M., Loffredo, F.S., Wojtkiewicz, G.R., Chen, J.W., Lee, R.T., Wagers, A.J., and Rubin, L.L, Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors, Science, 2014, vol. 344, no. 6184, pp. 630–634. doi 10.1126/science.1251141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keane, M., Semeiks, J., Webb, A.E., Li, Y.I., Quesada, V., Craig, T., Madsen, L.B., Van Dam, S., Brawand, D., Marques, P.I., Michalak, P., Kang, L., Bhak, J., Yim, H.S., Grishin, N.V., et al., Insights into the evolution of longevity from the bowhead whale genome, Cell Rep., 2015, vol. 10, no. 1, pp. 112–122. doi 10.1016/j.celrep.2014.12.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R.A., C. elegans mutant that lives twice as long as wild type, Nature, 1993, vol. 366, no. 6454, pp. 461–464. doi 10.1038/366461a0

  • Khan, M.H., Ligon, M., Hussey, L.R., Hufnal, B., Farber, R., Munkácsy, E., Rodriguez, A., Dillow, A., Kahlig, E., and Rea, S.L., TAF-4 is required for the life extension of isp-1, clk-1 and tpk-1 Mit mutants, Aging (Albany, New York), 2013, vol. 5, no. 10, pp. 741–758.

    Google Scholar 

  • Khapre, R.V., Kondratova, A.A., Patel, S., Dubrovsky, Y., Wrobel, M., Antoch, M.P., and Kondratov, R.V., BMAL1-dependent regulation of the mTOR signaling pathway delays aging, Aging (Albany, New York), 2014, vol. 6, no. 1, pp. 48–57.

    CAS  Google Scholar 

  • Kim, E.B., Fang, X., Fushan, A.A., Huang, Z., Lobanov, A.V., Han, L., Marino, S.M., Sun, X., Turanov, A.A., Yang, P., Yim, S.H., Zhao, X., Kasaikina, M.V., Stoletzki, N., Peng, C., et al., Genome sequencing reveals insights into physiology and longevity of the naked mole rat, Nature, 2011, vol. 479, no. 7372, pp. 223–227. doi 10.1038/nature10533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kleinert, H., Wallerath, T., Fritz, G., Ihrig-Biedert, I., Rodriguez-Pascual, F., Geller, D.A., and Forstermann, U, Cytokine induction of NOsynthase II in human DLD-1 cells: Roles of the JAK-STAT, AP-1 and NF-kappaB-signaling pathways, Br. J. Pharmacol., 1998, vol. 125, no. 1, pp. 193–201. doi 10.1038/sj.bjp.0702039

    CAS  PubMed  Google Scholar 

  • Klichko, V.I., Chow, E.S., Kotwica-Rolinska, J., Orr, W.C., Giebultowicz, J.M., and Radyuk, S.N, Aging alters circadian regulation of redox in drosophila, Front. Genet., 2015, vol. 6, p. 83. doi 10.3389/fgene.2015.00083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kolovou, G., Kolovou, V., Vasiliadis, I., Giannakopoulou, V., Mihas, C., Bilianou, H., Kollia, A., Papadopoulou, E., Marvaki, A., Goumas, G., Kalogeropoulos, P., Limperi, S., Katsiki, N., and Mavrogeni, S, The frequency of 4 common gene polymorphisms in nonagenarians, centenarians, and average life span individuals, Angiology, 2014, vol. 65, no. 3, pp. 210–215. doi 10.1177/0003319712475075

    CAS  PubMed  Google Scholar 

  • Kondratov, R.V., Kondratova, A.A., Gorbacheva, V.Y., Vykhovanets, O.V., and Antoch, M.P, Early aging and agerelated pathologies in mice deficient in BMAL1, the core componentof the circadian clock, Genes Dev., 2006, vol. 20, no. 14, pp. 1868–1873. doi 10.1101/gad.1432206

    CAS  PubMed  Google Scholar 

  • Kourtis, N. and Tavernarakis, N, Cellular stress response pathways and ageing: intricate molecular relationships, EMBO J., 2011, vol. 30, no. 13, pp. 2520–2531.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kruegel, U., Robison, B., Dange, T., Kahlert, G., Delaney, J.R., Kotireddy, S., Tsuchiya, M., Tsuchiyama, S., Murakami, C.J., and Schleit, J, Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae, PLoS Genet., 2011, vol. 7, no. 9.

  • Kumar, S., Dietrich, N., and Kornfeld, K, Angiotensin converting enzyme (ACE) inhibitor extends Caenorhabditis elegans life span, PLoS Genet., 2016, vol. 12, no. 2. doi 10.1371/journal.pgen.1005866

  • Le Bourg, E, The somatotropic axis may not modulate ageing and longevity in humans, Biogerontology, 2016, vol. 17, no. 2, pp. 421–429. doi 10.1007/s10522-015-9632-6

    Article  PubMed  Google Scholar 

  • Lee, S.-J., Hwang, A.B., and Kenyon, C, Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity, Curr. Biol., 2010a, vol. 20, no. 23, pp. 2131–2136.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, Y.H., Lee, H.Y., Kim, T.G., Lee, N.H., Yu, M.K., and Yi, H.K., PPARgamma maintains homeostasis through autophagy regulation in dental pulp, J. Dent. Res., 2015, vol. 94, no. 5, pp. 729–737. doi 10.1177/0022034515573833

  • Lee, Y.H., Lee, N.H., Bhattarai, G., Yun, J.S., Kim, T.I., Jhee, E.C., and Yi, H.K., PPAR? inhibits inflammatory reaction in oxidative stress induced human diploid fibloblast, Cell Biochem. Funct., 2010b, vol. 28, no. 6, pp. 490–496.

    Article  CAS  PubMed  Google Scholar 

  • Leiser, S.F. and Kaeberlein, M, The hypoxia-inducible factor HIF-1 functions as both a positive and negative modulator of aging, Biol. Chem., 2010, vol. 391, no. 10, pp. 1131–1137.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis, K.N., Mele, J., Hornsby, P.J., and Buffenstein, R, Stress resistance in the naked mole-rat: the bare essentials–a mini-review, Gerontology, 2012, vol. 58, no. 5, pp. 453–462. doi 10.1159/000335966

    Article  PubMed Central  PubMed  Google Scholar 

  • Lewis, K.N., Wason, E., Edrey, Y.H., Kristan, D.M., Nevo, E., and Buffenstein, R, Regulation of Nrf2 signaling and longevity in naturally long-lived rodents, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 12, pp. 3722–3727. doi 10.1073/pnas.1417566112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, S.F., Ye, X., and Malik, A.B, Inhibition of NF-kappaB activation by pyrrolidine dithiocarbamate prevents in vivo expression of proinflammatory genes, Circulation, 1999, vol. 100, no. 12, pp. 1330–1337.

    Article  CAS  PubMed  Google Scholar 

  • Longo, V.D, The Ras and Sch9 pathways regulate stress resistance and longevity, Exp. Gerontol., 2003, vol. 38, no. 7, pp. 807–811.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Lluch, G., Hunt, N., Jones, B., Zhu, M., Jamieson, H., Hilmer, S., Cascajo, M., Allard, J., Ingram, D., and Navas, P, Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 6, pp. 1768–1773.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G, The hallmarks of aging, Cell, 2013, vol. 153, no. 6, pp. 1194–1217. doi 10.1016/j.cell.2013.05.039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lorenzini, A., Johnson, F.B., Oliver, A., Tresini, M., Smith, J.S., Hdeib, M., Sell, C., Cristofalo, V.J., and Stamato, T.D, Significant correlation of species longevity with DNA double strand break recognition but not with telomere length, Mech. Ageing Dev., 2009, vol. 130, nos. 11–12, pp. 784–792. doi 10.1016/j.mad.2009.10.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo, S., Shaw, W.M., Ashraf, J., and Murphy, C.T., TGFbeta Sma/Mab signaling mutations uncouple reproductive aging from somatic aging, PLoS Genet., 2009, vol. 5, no. 12. doi 10.1371/journal.pgen.1000789

  • Luzi, L., Confalonieri, S, Di Fiore, P.P., and Pelicci, P.G., Evolution of Shc functions from nematode to human, Curr. Opin. Genet. Dev., 2000, vol. 10, no. 6, pp. 668–674.

    Article  CAS  PubMed  Google Scholar 

  • Manya, H., Akasaka-Manya, K., and Endo, T, Klotho protein deficiency and aging, Geriatr. Gerontol. Int., 2010, vol. 10, pp. S80–S87.

  • Mao, Z., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., Seluanov, A., and Gorbunova, V., SIRT6 promotes DNA repair under stress by activating PARP1, Science, 2011, vol. 332, no. 6036, pp. 1443–1446. doi 10.1126/science.1202723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marin-Garcia, J, Mitochondrial DNA repair: A novel therapeutic target for heart failure, Heart Fail Rev., 2016. doi 10.1007/s10741-016- 9543-x

    Google Scholar 

  • Martín-Montalvo, A., Villalba, J.M., Navas, P., and De Cabo, R., NRF2, cancer and calorie restriction, Oncogene, 2011, vol. 30, no. 5, pp. 505–520.

    Article  CAS  PubMed  Google Scholar 

  • Maslov, A.Y., Ganapathi, S., Westerhof, M., Quispe-Tintaya, W., White, R.R., Van Houten, B., Reiling, E., Dollé, M.E., Steeg, H., and Hasty, P., DNA damage in normally and prematurely aged mice, Aging Cell, 2013, vol. 12, no. 3, pp. 467–477.

  • Masternak, M.M. and Bartke, A., PPARs in calorie restricted and genetically long-lived mice, PPAR Res., 2006, vol. 2007.

    Google Scholar 

  • Matsuda, T., Kanki, T., Tanimura, T., Kang, D., and Matsuura, E.T, Effects of overexpression of mitochondrial transcription factor A on lifespan and oxidative stress response in Drosophila melanogaster, Biochem. Bioph. Res. Commun., 2013, vol. 430, no. 2, pp. 717–721. doi 10.1016/j.bbrc.2012.11.084

    Article  CAS  Google Scholar 

  • McPherron, A., Lawler, A., and Lee, S, Regulation of skeletal muscle maßsin micebyanew TGF-ß superfamily member, Nature, 1997, vol. 5, no. 1, pp. 83–90.

    Article  Google Scholar 

  • Mendias, C.L., Bakhurin, K.I., Gumucio, J.P., Shallal-Ayzin, M.V., Davis, C.S., and Faulkner, J.A, Haploinsufficiency of myostatin protects against aging-related declines in muscle function and enhances the longevity of mice, Aging Cell, 2015, vol. 14, no. 4, pp. 704–706.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Merino, M.M., Rhiner, C., Lopez-Gay, J.M., Buechel, D., Hauert, B., and Moreno, E, Elimination of unfit cells maintains tissue health and prolongs lifespan, Cell, 2015, vol. 160, no. 3, pp. 461–476. doi 10.1016/j.cell.2014.12.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller, M.D., Crotty, M., Giles, L.C., Bannerman, E., Whitehead, C., Cobiac, L., Daniels, L.A., and Andrews, G, Corrected arm muscle area: An independent predictor of long-term mortality in community-dwelling older adults?, J. Am. Geriatr. Soc., 2002, vol. 50, no. 7, pp. 1272–1277.

    Article  PubMed  Google Scholar 

  • Min, J.-N., Whaley, R.A., Sharpless, N.E., Lockyer, P., Portbury, A.L., and Patterson, C., CHIP deficiency decreases longevity, with accelerated aging phenotypes accompanied by altered protein quality control, Mol. Cell. Biol., 2008, vol. 28, no. 12, pp. 4018–4025.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morrow, G., Samson, M., Michaud, S., and Tanguay, R.M, Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress, The FASEB J., 2004, vol. 18, no. 3, pp. 598–599.

    CAS  PubMed  Google Scholar 

  • Moskalev, A. and Shaposhnikov, M, Pharmacological inhibition of NF-kappaB prolongs lifespan of Drosophila melanogaster, Aging (Albany, New York), 2011, vol. 3, no. 4, pp. 391–394.

    CAS  Google Scholar 

  • Moskalev, A., Plyusnina, E., Shaposhnikov, M., Shilova, L., Kazachenok, A., and Zhavoronkov, A, The role of D-GADD45 in oxidative, thermal and genotoxic stress resistance, Cell Cycle, 2012, vol. 11, no. 22, pp. 4222–4241. doi 10.4161/cc.22545

    CAS  Google Scholar 

  • Moskalev, A., Shaposhnikov, M., and Turysheva, E, Life span alteration after irradiation in Drosophila melanogaster strains with mutations of Hsf and Hsps, Biogerontology, 2009, vol. 10, no. 1, pp. 3–11. doi 10.1007/s10522-008-9147-5

    Article  CAS  PubMed  Google Scholar 

  • Moskalev, A.A. and Aliper, A.M., Smit-Mcbride Z., Buzdin A., Zhavoronkov A. Genetics and epigenetics of aging and longevity, Cell Cycle, 2014, vol. 13, no. 7, pp. 1063–1077.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moskalev, A.A. and Zainullin, V.G, The role of reaperdependent apoptosis in the radiation-induced change in lifetime in Drosophila melanogaster, Radiats. Biol. Radioekol., 2003, vol. 43, no. 2, pp. 242–244.

    CAS  Google Scholar 

  • Moskalev, A.A., Starenie i geny (Aging and Genes), St. Petersburg: Nauka, 2008.

    Google Scholar 

  • Moskalev, A.A., Proshkina, E.N., and Shaposhnikov, M.V, Chapter 2. Gadd45 Proteins in Aging and Longevity of Mammals and Drosophila, Life Extension Lessons from Drosophila, Cham: Springer, 2015, pp. 39–65.

    Chapter  Google Scholar 

  • Mostoslavsky, R., Chua, K.F., Lombard, D.B., Pang, W.W., Fischer, M.R., Gellon, L., Liu, P., Mostoslavsky, G., Franco, S., Murphy, M.M., Mills, K.D., Patel, P., Hsu, J.T., Hong, A.L., et al., Genomic instability and aging-like phenotype in the absence of mammalian SIRT6, Cell, 2006, vol. 124, no. 2, pp. 315–329. doi 10.1016/j.cell.2005.11.044

    Article  CAS  PubMed  Google Scholar 

  • Neufeld-Cohen, A., Robles, M.S., Aviram, R., Manella, G., Adamovich, Y., Ladeuix, B., Nir, D., Rousso-Noori, L., Kuperman, Y., Golik, M., Mann, M., and Asher, G, Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 12, pp. E1673–E1682. doi 10.1073/pnas.1519650113

  • Oh, S.W., Mukhopadhyay, A., Svrzikapa, N., Jiang, F., Davis, R.J., and Tissenbaum, H.A., JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 12, pp. 4494–4499. doi 10.1073/pnas.0500749102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olovnikov, A.M, A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon, J. Theor. Biol., 1973, vol. 41, no. 1, pp. 181–190.

    Article  CAS  PubMed  Google Scholar 

  • Onken, B. and Driscoll, M, Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1, PLoS ONE, 2010, vol. 5, no. 1.

  • Oudit, G.Y., Liu, G.C., Zhong, J., Basu, R., Chow, F.L., Zhou, J., Loibner, H., Janzek, E., Schuster, M., Penninger, J.M., Herzenberg, A.M., Kassiri, Z., and Scholey, J.W, Human recombinant ACE2 reduces the progression of diabetic nephropathy, Diabetes, 2010, vol. 59, no. 2, pp. 529–538. doi 10.2337/db09-1218

    Article  CAS  PubMed  Google Scholar 

  • Pall, M.L. and Levine, S., Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors, Sheng Li Xue Bao, 2015, vol. 67, no. 1, pp. 1–18.

    CAS  PubMed  Google Scholar 

  • Perkins, N.D, Integrating cell-signalling pathways with NF-kappaB and IKK function, Nat. Rev. Mol. Cell Biol., 2007, vol. 8, no. 1, pp. 49–62. doi 10.1038/nrm2083

    Article  CAS  PubMed  Google Scholar 

  • Piaceri, I., Bagnoli, S., Tedde, A., Sorbi, S., and Nacmias, B, Ataxia-telangiectasia mutated (ATM) genetic variant in Italian centenarians, Neurol. Sci., 2013, vol. 34, no. 4, pp. 573–575. doi 10.1007/s10072-012-1188-5

    Article  PubMed  Google Scholar 

  • Picca, A., Pesce, V., Fracasso, F., Joseph, A.M., Leeuwenburgh, C., and Lezza, A.M, Aging and calorie restriction oppositely affect mitochondrial biogenesis through TFAM binding at both origins of mitochondrial DNA replication in rat liver, PLoS ONE, 2013, vol. 8, no. 9. doi 10.1371/journal. pone.0074644

  • Pickering, A.M., Lehr, M., and Miller, R.A, Lifespan of mice and primates correlates with immunoproteasome expression, J. Clin. Invest., 2015, vol. 125, no. 5, pp. 2059–2068.

    Article  PubMed Central  PubMed  Google Scholar 

  • Plyusnina, E.N., Shaposhnikov, M.V., and Moskalev, A.A, Increase of Drosophila melanogaster lifespan due to D-GADD45 overexpression in the nervous system, Biogerontology, 2011, vol. 12, no. 3, pp. 211–226. doi 10.1007/s10522-010-9311-6

    Article  CAS  PubMed  Google Scholar 

  • Pyo, J.-O., Yoo, S.-M., Ahn, H.-H., Nah, J., Hong, S.-H., Kam, T.-I., Jung, S., and Jung, Y.-K., Overexpression of Atg5 in mice activates autophagy and extends lifespan, Nat. Commun, 2013, vol. 4.

  • Rakshit, K. and Giebultowicz, J.M, Cryptochrome restores dampened circadian rhythms and promotes healthspan in aging Drosophila, Aging Cell, 2013, vol. 12, no. 5, pp. 752–762. doi 10.1111/acel.12100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramasamy, R., Shekhtman, A., and Schmidt, A.M, The multiple faces of RAGE–opportunities for therapeutic intervention in aging and chronic disease, Expert. Opin. Ther. Targets, 2016, vol. 20, no. 4, pp. 431–446. doi 10.1517/14728222.2016.1111873

    Article  CAS  PubMed  Google Scholar 

  • Regenhardt, R.W., Mecca, A.P., Desland, F., Ritucci-Chinni, P.F., Ludin, J.A., Greenstein, D., Banuelos, C., Bizon, J.L., Reinhard, M.K., and Sumners, C, Centrally administered angiotensin-(1-7) increases the survival of strokeprone spontaneously hypertensive rats, Exp. Physiol., 2014, vol. 99, no. 2, pp. 442–453. doi 10.1113/expphysiol.2013.075242

    Article  CAS  PubMed  Google Scholar 

  • Rera, M., Bahadorani, S., Cho, J., Koehler, C.L., Ulgherait, M., Hur, J.H., Ansari, W.S., Lo, T., Jones, D.L., and Walker, D.W, Modulation of longevity and tissue homeostasis by the drosophila PGC-1 homolog, Cell Metab., 2011, vol. 14, no. 5, pp. 623–634. doi 10.1016 /j.cmet.2011.09.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ropelle, E.R., Pauli, J.R., Cintra, D.E., da Silva, A.S., De Souza, C.T., Guadagnini, D., Carvalho, B.M., Caricilli, A.M., Katashima, C.K., Carvalho-Filho, M.A., Hirabara, S., Curi, R., Velloso, L.A., Saad, M.J., and Carvalheira, J.B, Targeted disruption of inducible nitric oxide synthase protects against aging, S-nitrosation, and insulin resistance in muscle of male mice, Diabetes, 2013, vol. 62, no. 2, pp. 466–470.

    CAS  PubMed  Google Scholar 

  • Rubinsztein, D.C, Mariño, G., and Kroemer, G., Autophagy and aging, Cell, 2011, vol. 146, no. 5, pp. 682–695.

    Article  CAS  PubMed  Google Scholar 

  • Salminen, A. and Kaarniranta, K., AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network, Ageing Res. Rev., 2012, vol. 11, no. 2, pp. 230–241. doi 10.1016/j.arr.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  • Santos, E.L., de Picoli Souza, K., da Silva, E.D., Batista, E.C., Martins, P.J., D’Almeida, V., and Pesquero, J.B, Long term treatment with ACE inhibitor enalapril decreases body weight gain and increases life span in rats, Biochem. Pharmacol., 2009, vol. 78, no. 8, pp. 951–958. doi 10.1016/j.bcp.2009.06.018

    Article  CAS  PubMed  Google Scholar 

  • Satoh, A., Brace, C.S., Rensing, N., Cliften, P., Wozniak, D.F., Herzog, E.D., Yamada, K.A., and Imai, S., Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH, Cell Metab, 2013, vol. 18, no. 3, pp. 416–430.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seim, I., Fang, X., Xiong, Z., Lobanov, A.V., Huang, Z., Ma, S., Feng, Y., Turanov, A.A., Zhu, Y., Lenz, T.L., Gerashchenko, M.V., Fan, D, Hee, YimS., Yao, X., et al., Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii, Nat. Commun., 2013, vol. 4, p. 2212. doi 10.1038/ncomms3212

    Article  PubMed Central  PubMed  Google Scholar 

  • Shaposhnikov, M., Proshkina, E., Shilova, L., Zhavoronkov, A., and Moskalev, A, Lifespan and stress resistance in Drosophila with overexpressed DNA repair genes, Sci. Rep., 2015, vol. 5, p. 15299. doi 10.1038/srep15299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shaposhnikov, M.V., Moskalev, A.A., and Plyusnina, E.N, Effect of PARP-1 overexpression and pharmacological inhibition of NF-kB on the lifespan of Drosophila melanogaster, Adv. Gerontol., 2011, vol. 24, no. 3, pp. 405–419.

    CAS  PubMed  Google Scholar 

  • Shaposhnikov, M.V., Proshkina, E.N., Shilova, L.A., and Moskalev, A.A., Rol’ reparatsii povrezhdenii DNK v dolgoletii (The Role of DNA Damage Repair in Longevity), Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2015.

    Google Scholar 

  • Shaw, W.M., Luo, S., Landis, J., Ashraf, J., and Murphy, C.T, The C. elegans TGF-beta Dauer pathway regulates longevity via insulin signaling, Curr. Biol., 2007, vol. 17, no. 19, pp. 1635–1645. doi 10.1016/j.cub.2007.08.058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simmonds, R.E. and Foxwell, B.M, Signalling,inflammation and arthritis: NF-kappaB and its relevance to arthritis and inflammation, Rheumatology (Oxford), 2008, vol. 47, no. 5, pp. 584–590. doi 10.1093/rheumatology/kem298

    Article  CAS  Google Scholar 

  • Simonsen, A., Cumming, R.C., Brech, A., Isakson, P., Schubert, D.R., and Finley, K.D, Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila, Autophagy, 2008, vol. 4, no. 2, pp. 176–184.

    Article  CAS  PubMed  Google Scholar 

  • Sinha, M., Jang, Y.C., Oh, J., Khong, D., Wu, E.Y., Manohar, R., Miller, C., Regalado, S.G., Loffredo, F.S., Pancoast, J.R., Hirshman, M.F., Lebowitz, J., Shadrach, J.L., Cerletti, M., et al., Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle, Science, 2014, vol. 344, no. 6184, pp. 649–652. doi 10.1126/science.1251152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slack, C., Alic, N., Foley, A., Cabecinha, M., Hoddinott, M.P., and Partridge, L, The Ras-Erk-ETS-signaling pathway is a drug target for longevity, Cell, 2015, vol. 162, no. 1, pp. 72–83. doi 10.1016/j.cell.2015.06.023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith, J.S., Brachmann, C.B., Celic, I., Kenna, M.A., Muhammad, S., Starai, V.J., Avalos, J.L., Escalante-Semerena, J.C., Grubmeyer, C., and Wolberger, C, A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family, Proc. Natl Acad. Sci., 2000, vol. 97, no. 12, pp. 6658–6663.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Snell, T.W., Johnston, R.K., Rabeneck, B., Zipperer, C., and Teat, S, Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera), Exp. Gerontol., 2014, vol. 52, pp. 55–69. doi 10.1016/j.exger.2014.01.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Solovyev, I.A., Dobrovolskaya, E.V., and Moskalev, A.A, Genetic control of circadian rhythms and aging, Russ. J. Genet., 2016, vol. 52, no. 4, pp. 343–361.

    Article  CAS  Google Scholar 

  • Stenesen, D., Suh, J.M., Seo, J., Yu, K., Lee, K.-S., Kim, J.-S., Min, K.-J., and Graff, J.M, Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies, Cell Metab., 2013, vol. 17, no. 1, pp. 101–112.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sung, B., Park, S., Yu, B.P., and Chung, H.Y, Amelioration of age-related inflammation and oxidative stress by PPAR? activator: Suppression of NF-?B by 2,4-thiazolidinedione, Exp. Gerontol., 2006, vol. 41, no. 6, pp. 590–599.

    Article  CAS  PubMed  Google Scholar 

  • Swindell, W.R., Masternak, M.M., Kopchick, J.J., Conover, C.A., Bartke, A., and Miller, R.A, Endocrine regulation of heat shock protein mRNA levels in long-lived dwarf mice, Mech. Ageing Dev., 2009, vol. 130, no. 6, pp. 393–400.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sykiotis, G.P. and Bohmann, D., Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila, Dev. Cell, 2008, vol. 14, no. 1, pp. 76–85. doi 10.1016/j.devcel.2007.12.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Symphorien, S. and Woodruff, R.C, Effect of DNA repair on aging of transgenic Drosophila melanogaster: I. mei-41 locus, J. Gerontol. A Biol. Sci. Med. Sci., 2003, vol. 58, no. 9, pp. B782–B787.

    Article  PubMed  Google Scholar 

  • Szwergold, B.S. and Miller, C.B, Potential of birds to serve as a pathology-free model of type 2 diabetes, Part 1. Is the apparent absence of the rage gene a factor in the resistance of avian organisms to chronic hyperglycemia?, Rejuv. Res., 2014, vol. 17, no. 1, pp. 54–61. doi 10.1089/rej.2013.1498

    Google Scholar 

  • Tan, Q., Soerensen, M., Kruse, T.A., Christensen, K., and Christiansen, L, A novel permutation test for case-only analysis identifies epistatic effects on human longevity in the FOXO gene family, Aging Cell, 2013, vol. 12, no. 4, pp. 690–694. doi 10.1111/acel.12092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, V.P. and Miyamoto, S., Nutrient-sensing mTORC1: Integration of metabolic and autophagic signals, J. Mol. Cell Cardiol., 2016. doi 10.1016/j.yjmcc.2016.01.005

    Google Scholar 

  • Tatar, M., Kopelman, A., Epstein, D., Tu, M.P., Yin, C.M., and Garofalo, R.S, A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function, Science, 2001, vol. 292, no. 5514, pp. 107–110. doi 10.1126/science.1057987

    Article  CAS  PubMed  Google Scholar 

  • Taylor, R.C. and Dillin, A, Aging as an event of proteostasis collapse, Cold Spring Harbor Persp. Biol., 2011, vol. 3, no. 5.

  • Tian, J., Yan, Z., Wu, Y., Zhang, S.L., Wang, K., Ma, X.R., Guo, L., Wang, J., Zuo, L., Liu, J.Y., Quan, L., and Liu, H.R, Inhibition of iNOS protects endothelial-dependent vasodilation in aged rats, Acta Pharmacol. Sin., 2010, vol. 31, no. 10, pp. 1324–1328. doi 10.1038/aps.2010.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomaru, U., Takahashi, S., Ishizu, A., Miyatake, Y., Gohda, A., Suzuki, S., Ono, A., Ohara, J., Baba, T., and Murata, S, Decreased proteasomal activity causes agerelated phenotypes and promotes the development of metabolic abnormalities, Am. J. Pathol., 2012, vol. 180, no. 3, pp. 963–972.

    Article  CAS  PubMed  Google Scholar 

  • Tran, H., Brunet, A., Grenier, J.M., Datta, S.R., Fornace, A.J., DiStefano, P.S., Chiang, L.W., and Greenberg, M.E., DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein, Science, 2002, vol. 296, no. 5567, pp. 530–534. doi 10.1126/science.1068712

    Article  CAS  PubMed  Google Scholar 

  • Tsurumi, A. and Li, W.X, Global heterochromatin loss: A unifying theory of aging?, Epigenetics, 2012, vol. 7, no. 7, pp. 680–688. doi 10.4161/epi.20540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsui, M., Shimokawa, H., Otsuji, Y., Ueta, Y., Sasaguri, Y., and Yanagihara, N, Nitric oxide synthases and cardiovascular diseases: Insights from genetically modified mice, Circ. J, 2009, vol. 73, no. 6, pp. 986–993.

    Article  CAS  PubMed  Google Scholar 

  • Twumasi-Boateng, K., Wang, T.W., Tsai, L., Lee, K.H., Salehpour, A., Bhat, S., Tan, M.W., and Shapira, M, An age-dependent reversal in the protective capacities of JNK signaling shortens Caenorhabditis elegans lifespan, Aging Cell, 2012, vol. 11, no. 4, pp. 659–667. doi 10.1111/j.1474- 9726.2012.00829.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyner, S.D., Venkatachalam, S., Choi, J., Jones, S., Ghebranious, N., Igelmann, H., Lu, X., Soron, G., Cooper, B., Brayton, C., Park, S.H., Thompson, T., Karsenty, G., Bradley, A., and Donehower, L.A., p53 mutant mice that display early ageing-associated phenotypes, Nature, 2002, vol. 415, no. 6867, pp. 45–53. doi 10.1038/415045a

    Article  CAS  PubMed  Google Scholar 

  • Ulgherait, M., Rana, A., Rera, M., Graniel, J., and Walker, D.W., AMPK modulates tissue and organismal aging in a non-cell-autonomous manner, Cell Reports, 2014, vol. 8, no. 6, pp. 1767–1780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungar, L., Harari, Y., Toren, A., and Kupiec, M, Tor complex 1 controls telomere length by affecting the level of Ku, Curr. Biol., 2011, vol. 21, no. 24, pp. 2115–2120. doi 10.1016/j.cub.2011.11.024

    Article  CAS  PubMed  Google Scholar 

  • Ungvari, Z., Ridgway, I., Philipp, E.E., Campbell, C.M., McQuary, P., Chow, T., Coelho, M., Didier, E.S., Gelino, S., Holmbeck, M.A., Kim, I., Levy, E., Sosnowska, D., Sonntag, W.E., Austad, S.N., and Csiszar, A, Extreme longevity is associated with increased resistance to oxidative stress in Arctica islandica, the longest-living non-colonial animal, J. Gerontol. A Biol. Sci. Med. Sci., 2011, vol. 66, no. 7, pp. 741–750. doi 10.1093/gerona/glr044

    Article  PubMed  CAS  Google Scholar 

  • Vajapey, R., Rini, D., Walston, J., and Abadir, P, The impact of age-related dysregulation of the angiotensin system on mitochondrial redox balance, Front. Physiol., 2014, vol. 5, p. 439. doi 10.3389/fphys.2014.00439

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Deursen, J.M, The role of senescent cells in ageing, Nature, 2014, vol. 509, no. 7501, pp. 439–446. doi 10.1038/nature13193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Meter, M., Kashyap, M., Rezazadeh, S., Geneva, A.J., Morello, T.D., Seluanov, A., and Gorbunova, V., SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age, Nat. Commun., 2014, vol. 5, p. 5011. doi 10.1038/ncomms6011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vermeulen, C.J., Van De Zande, L., and Bijlsma, R, Resistance to oxidative stress induced by paraquat correlates well with both decreased and increased lifespan in Drosophila melanogaster, Biogerontology, 2005, vol. 6, no. 6, pp. 387–395. doi 10.1007/s10522-005-4903-2

    Article  CAS  PubMed  Google Scholar 

  • Wang, M.C., Bohmann, D., and Jasper, H., JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila, Dev. Cell, 2003, vol. 5, no. 5, pp. 811–816.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. and Sun, Z, Antiaging gene Klotho regulates endothelin-1 levels and endothelin receptor subtype B expression in kidneys of spontaneously hypertensive rats, J. Hypertens., 2014, vol. 32, no. 8, pp. 1629–1636.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, A. and Attisano, L, The TGFbeta superfamily signaling pathway, Wiley Interdiscip. Rev. Dev. Biol., 2013, vol. 2, no. 1, pp. 47–63. doi 10.1002/wdev.86

    Article  CAS  PubMed  Google Scholar 

  • White, T.A. and LeBrasseur, N.K, Myostatin and sarcopenia: Opportunities and challenges–a mini-review, Gerontology, 2014, vol. 60, no. 4, pp. 289–293.

    Article  CAS  PubMed  Google Scholar 

  • Willcox, B.J., Tranah, G.J., Chen, R., Morris, B.J., Masaki, K.H., He, Q., Willcox, D.C., Allsopp, R.C., Moisyadi, S., Poon, L.W., Rodriguez, B., Newman, A.B., Harris, T.B., Cummings, S.R., Liu, Y., Parimi, N., Evans, D.S., Davy, P., Gerschenson, M., and Donlon, T.A, The FoxO3 gene and cause-specific mortality, Aging Cell, 2016. doi 10.1111/acel.12452

    Google Scholar 

  • Xia, H., Suda, S., Bindom, S., Feng, Y., Gurley, S.B., Seth, D., Navar, L.G., and Lazartigues, E., ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function, PLoS ONE, 2011, vol. 6, no. 7. doi 10.1371/journal.pone.0022682

  • Xie, J., Yoon, J., An, S.-W., Kuro-O, M., and Huang, C.-L., Soluble Klotho protects against uremic cardiomyopathy independently of fibroblast growth factor 23 and phosphate, J. Am. Soc. Nephrol., 2015, vol. 26, no. 5, pp. 1150–1160.

    Article  CAS  PubMed  Google Scholar 

  • Yonekura, H., Yamamoto, Y., Sakurai, S., Watanabe, T., and Yamamoto, H, Roles of the receptor for advanced glycation endproducts in diabetes-induced vascular injury, J. Pharmacol. Sci., 2005, vol. 97, no. 3, pp. 305–311.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G., Li, J., Purkayastha, S., Tang, Y., Zhang, H., Yin, Y., Li, B., Liu, G., and Cai, D, Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH, Nature, 2013, vol. 497, no. 7448, pp. 211–216. doi 10.1038/nature12143

    CAS  PubMed  Google Scholar 

  • Zhang, R., Chen, H.-Z., and Liu, D.-P., The four layers of aging, Cell Syst., 2015, vol. 1, no. 3, pp. 180–186.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, G., Hatting, M., Nevzorova, Y.A., Peng, J., Hu, W., Boekschoten, M.V., Roskams, T., Muller, M., Gassler, N., Liedtke, C., Davis, R.J., Cubero, F.J., and Trautwein, C., Jnk1 in murine hepatic stellate cells is a crucial mediator of liver fibrogenesis, Gut, 2014, vol. 63, no. 7, pp. 1159–1172. doi 10.1136/gutjnl-2013-305507

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Moskalev.

Additional information

Original Russian Text © A.A. Moskalev, E.N. Proshkina, A.A. Belyi, I.A. Solovyev, 2016, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2016, Vol. 20, No. 4, pp. 426–440.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskalev, A.A., Proshkina, E.N., Belyi, A.A. et al. Genetics of aging and longevity. Russ J Genet Appl Res 7, 369–384 (2017). https://doi.org/10.1134/S2079059717040074

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059717040074

Keywords

Navigation