Skip to main content
Log in

Effect of particle size on the oxidation of WC powders during heating

  • Published:
Inorganic Materials Aims and scope

Abstract

The oxidation of tungsten carbide powders ranging in average particle size -D from 20 to 6000 nm has been studied by thermal analysis. Independent of particle size, the WC powders oxidize to the higher oxide WO3. With decreasing particle size, the oxidation rate increases, and the exothermic peak temperature decreases. Empirical relations are presented for the peak temperature and activation energy of oxidation as functions of the particle size of the powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newkirk, A.E., The Oxidation of Tungsten Carbide, J. Am. Chem. Soc., 1955, vol. 77, no. 17, pp. 4521–4522.

    Article  CAS  Google Scholar 

  2. Dufour, L.C. and Simon, J., Cinetique d'oxidation sous faible pression d'oxygene d'echantillons pulverulents de monocarbures de zirconium et de tungstene, Bull. Soc. Chim. Fr., 1968, no. 9, pp. 3644–3651.

  3. Ribeiro, C.A., Souza, W.R., Crespi, M.S., et al., Non-Isothermal Kinetic of Oxidation of Tungsten Carbide, J. Therm. Anal. Calorim., 2007, vol. 90, no. 3, pp. 801–805.

    Article  CAS  Google Scholar 

  4. Kurlov, A.S., Nazarova, S.Z., and Gusev, A.I., Magnetic Susceptibility and Thermal Stability of Nanocrystalline Tungsten Carbide, Dokl. Akad. Nauk, 2005, vol. 405, no. 2, pp. 218–223.

    Google Scholar 

  5. Gusev, A.I. and Kurlov, A.S., Milling Model and Preparation of Nanocrystalline WC Powder, Neorg. Mater., 2009, vol. 45, no. 1, pp. 38–45 [Inorg. Mater. (Engl. Transl.), vol. 45, no. 1, pp. 35–42].

    Article  Google Scholar 

  6. Kurlov, A.S. and Rempel, A.A., Effect of WC Nanoparticle Size on the Sintering Temperature, Density, and Microhardness of WC-8 wt % Co Alloys, Neorg. Mater., 2009, vol. 45, no. 4, pp. 429–434 [Inorg. Mater. (Engl. Transl.), vol. 45, no. 4, pp. 380–385].

    Article  Google Scholar 

  7. Kurlov, A.S. and Gusev, A.I., Production of Nanocrystalline Powder of WC via Ball-Milling, 17th Plansee Seminar. Int. Conf. High Performance P/M Materials (Reutte, 2009), Reutte: Plansee Group, 2009, vol. 3, pp. GT24/1–GT24/11.

    Google Scholar 

  8. Wicks, C.E. and Block, F.E., Thermodynamic Properties of 65 Elements, Their Oxides, Halides, Carbides, and Nitrides, Bull.—U.S., Bur. Mines, 1963, no. 605.

  9. Woodward, P.M., Sleight, A.W., and Vogt, T., Structure Refinement of Triclinic Tungsten Trioxide, J. Phys. Chem. Solids, 1995, vol. 56, no. 10, pp. 1305–1315.

    Article  CAS  Google Scholar 

  10. Gusev, A.I. and Rempel, A.A., Nanocrystalline Materials, Cambridge: Cambridge Int. Sci., 2004.

    Google Scholar 

  11. Ozawa, T., Kinetic Analysis of Derivative Curves in Thermal Analysis, J. Therm. Anal., 1970, vol. 2, no. 3, pp. 311–324.

    Google Scholar 

  12. Ozawa, T., Kinetics of Non-Isothermal Crystallization, Polymer, 1971, vol. 12, no. 3, pp. 150–158.

    Article  CAS  Google Scholar 

  13. Šesták, J., Thermophysical Properties of Solids, Their Measurements and Theoretical Thermal Analysis, Amsterdam: Elsevier, 1984.

    Google Scholar 

  14. Málek J., Šesták J., Rouquerol, F., et al., Possibilities of Two Non-Isothermal Procedures (Temperature- or Rate-Controlled) for Kinetical Studies, J. Therm. Anal., 1992, vol. 38,nos. 1–2, pp. 71–87.

    Google Scholar 

  15. Šesták, J. and Berggren, G., Study of the Kinetics of the Mechanism of Solid-State Reactions at Increasing Temperatures, Thermochim. Acta, 1971, vol. 3, no. 1, pp. 1–12.

    Article  Google Scholar 

  16. Málek, J., A Computer Program for Kinetic Analysis of Non-Isothermal Thermoanalytical Data, Thermochim. Acta, 1989, vol. 138, no. 2, pp. 337–346.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kurlov.

Additional information

Original Russian Text © A.S. Kurlov, A.I. Gusev, 2011, published in Neorganicheskie Materialy, 2011, Vol. 47, No. 2, pp. 173–178.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurlov, A.S., Gusev, A.I. Effect of particle size on the oxidation of WC powders during heating. Inorg Mater 47, 133–138 (2011). https://doi.org/10.1134/S0020168511020099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168511020099

Keywords

Navigation