Skip to main content
Log in

Mechanical properties and fracture upon static tension of the high-carbon steel with different types of pearlite structure

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The hardness and mechanical properties of the U10 steel (1.03 wt % C) with pearlite structures that were formed by isothermal decomposition at temperatures of 650°C (coarse-lamellar pearlite) and 500°C (fine-lamellar pearlite) as well as upon subsequent annealing of fine-lamellar pearlite at a temperature of 650°C for 10–300 min have been studied upon tensile tests. Fractures of the steel with different types of pearlite structure have been examined using scanning electron microscopy. The interrelation between the mechanical properties and the structural features and character of fracture has been analyzed for this steel with pearlite structures differing in the dispersity, morphology, and defect structure of cementite, and in the levels of solid-solution strengthening and microdistortions of the ferrite-constituent lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Schastlivtsev, D. A. Mirzaev, I. L. Yakovleva, et al., Pearlite in Carbon Steels (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2006) [in Russian].

    Google Scholar 

  2. E. H. Engel, “The Softening Rate of a Steel when Tempered from Different Initial Structures,” Trans. Am. Soc. Met. 27, 1–15 (1939).

    CAS  Google Scholar 

  3. V. M. Schastlivtsev, I. L. Yakovleva, and A. S. Zavarov, “Effect of Tempering on the Structure and Properties of Patented Steel,” Fiz. Met. Metalloved. 49(1), 138–144 (1980).

    CAS  Google Scholar 

  4. V. M. Schastlivtsev, I. L. Yakovleva, and D. A. Mirzaev, “Structural Transformations in Pearlite during Heating. I. Solid Solution Strengthening of the Ferritic Constitutent of Pearlite,” Fiz. Met. Metalloved. 77(4), 138–147 (1994) [Phys. Met. Metallogr. 77, 427–432 (1994)].

    CAS  Google Scholar 

  5. V. M. Schastlivtsev, T. I. Tabatchikova, A. V. Makarov, et al., “Effect of Ferrite Solid-Solution Strengthening and Cementite Spheroidizing on the Wear Resistance of a Eutectoid Carbon Steel with a Fine-Lamellar Pearlitic Structure,” Fiz. Met. Metalloved. 88(1), 94–103 (1999) [Phys. Met. Metallogr. 88, 87–95 (1999)].

    CAS  Google Scholar 

  6. A. V. Makarov, L. Kh. Kogan, V. M. Schastlivtsev, et al., “On the Possibility of Controlling Hardness and Wear Resistance of a Eutectoid Carbon Steel with a Structure of Fine-Lamellar Pearlite by Magnetic and Electromagnetic Methods,” Defektoskopiya, No. 8, 3–17 (2000).

  7. A. V. Makarov, V. M. Schastlivtsev, E. S. Gorkunov, et al., “On the Potential of the Nondestructive Control of Physicomechanical Characteristics of Hypereutectoid Carbon Steels with Structures of the Isothermally Decomposed Austenite,” Defektoskopiya, No. 10, 62–86 (2002).

  8. A. V. Makarov, V. M. Schastlivtsev, T. I. Tabatchikova, et al., “Wear Resistance of Hypereutectoid Carbon Steels with Structures of Isothermally Transformed Austenite,” Fiz. Met. Metalloved. 97(5), 94–105 (2004) [Phys. Met. Metallogr. 97, 519–530 (2004)].

    CAS  Google Scholar 

  9. J. D. Embury and R. M. Ficher, “The Structure and Properties of Drawn Pearlite,” Acta Metall. 14(2), 147–159 (1966).

    Article  CAS  Google Scholar 

  10. V. Ya. Zubov, “Patenting Wire,” Metalloved. Term. Obrab. Met., No. 9, 49–56 (1972).

  11. V. N. Gridnev, V. G. Gavrilyuk, and Yu. Ya. Meshkov, Strength and Plasticity of Cold-Worked Steel (Naukova Dumka, Kiev, 1974) [in Russian].

    Google Scholar 

  12. V. Ya. Zubov, Patenting and Drawing Steel Wire (Metallurgizdat, Moscow, 1945) [in Russian].

    Google Scholar 

  13. A. F. Zolotarskii, Ya. R. Rauzin, E. A. Shur, et al., Thermally Strengthened Rails (Transport, Moscow, 1976) [in Russian].

    Google Scholar 

  14. A. S. Zheltkov and V. V. Filippov, “Effect of Carbon Content and Conditions of Patenting/Brass-Plating on the Wire Strengthening,” Stal’, No. 2, 45–48 (2001).

  15. A Handbook of the Metallography and Heat Treatment of Steel, Vol. 3: Heat Treatment of Metal Products, Ed. by M. L. Bernshtein and A. G. Rakhshtadt (Metallurgiya, Moscow, 1983).

    Google Scholar 

  16. V. I. Vorozhishchev, V. N. Ermolaev, V. P. Abelyashev, et al., “Improving the Technology of Heat Treatment of Railroad Rails,” Stal’, No. 4, 69–70 (1982).

  17. Yu. V. Ivanisenko, G. Baumann, G. Fekht, et al., “Nanostructure and Hardness of the White Layer at the Surface of Railroad Rails,” Fiz. Met. Metalloved., 83(3), 104–111 (1996) [Phys. Met. Metallogr. 83, 303–309 (1996)].

    Google Scholar 

  18. Yu. M. Luzhnov and A. V. Chichinadze, “On the Origin of Catastrophic Wear of Wheels of Vehicles and Rails of Rail Transport,” Trenie Iznos 19(3), 344–349 (1998).

    Google Scholar 

  19. A. S. Mironenko, “Why and How They Control Steel Wire Ropes,” V Mire Nerazrush. Kontrol. 2(32), 5–7 (2006).

    Google Scholar 

  20. S. V. Khomenko and I. I. Shpakov, “Magnetic Defectoscopy of Steel Ropes of Lift Cranes and Other Potentially Dangerous Objects,” V Mire Nerazrush. Kontrol. 2(32), 18–21 (2006).

    Google Scholar 

  21. Steels and Alloys: A Handbook of Grades, Ed. by V. G. Sorokin and M. A. Gervas’ev (Intermet Inzhiniring, Moscow, 2003) [in Russian].

    Google Scholar 

  22. M. Gensamer, E. B. Pearsall, W. S. Pellini, and J. R. Low, Jr., “The Tensile Properties of Pearlite, Bainite, and Spheroidite,” Trans. Am. Soc. Met. 30, 983–1020 (1942).

    CAS  Google Scholar 

  23. L. I. Tushinskii, A. A. Bataev, and L. B. Tikhomirova, Structure of Pearlite and the Engineering Strength of Steel (Nauka, Novosibirsk, 1993) [in Russian].

    Google Scholar 

  24. I. L. Yakovleva, L. E. Kar’kina, Yu. V. Khlebnikova, and V. M. Schastlivtsev, “Crystallographic Analysis of Defects of Cementite in the Lamellar Pearlite of Carbon Steel,” Fiz. Met. Metalloved. 92(3), 77–88 (2001) [Phys. Met. Metallogr. 92, 281–292 (2001)].

    CAS  Google Scholar 

  25. G. Tomas, Transmission Electron Microscopy of Metals (Wiley, New York, 1962; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  26. Y. L. Tian and R. W. Krauft, “Mechanism of Pearlite Spheroidization,” Metall. Trans. A 18A(8), 1403–1414 (1987).

    CAS  Google Scholar 

  27. K. Yu. Okishev, D. A. Mirzaev, V. M. Schastlivtsev, and I. L. Yakovleva, “Study of the Structure of Cementite in pearlite from the Broadening of Diffraction Maxima,” Fiz. Met. Metalloved. 85(2), 145–152 (1998) [Phys. Met. Metallogr. 85, 218–222 (1998)].

    CAS  Google Scholar 

  28. V. K. Babich, Yu. P. Gul’, and I. E. Dolzhenkov, Deformation Aging of Steels (Metallurgiya, Moscow, 1972) [in Russian].

    Google Scholar 

  29. Fractography and Atlas of Fractographs, Ed. by H. E. Boyer and T. L. Call (ASM Metals Park, Ohio, 1974; Metallurgiya, Moscow, 1982).

    Google Scholar 

  30. L. T. Miller and G. S. Smith, “Tensile Fracture in Carbon Steels,” J. Iron Steel Inst. 208(11), 988–1005 (1970).

    Google Scholar 

  31. Rasterelektronmikroskopische Untersuchtung von Metallschäden (Scanning Electron Microscopy: Fracture), Ed. by L. Engel and H. Klingele (Carl Hanser, München, 1982; Metallurgiya, Moscow, 1986).

    Google Scholar 

  32. J. M. Hyzak and I. M. Bernstein, “The Role of Microstructure on the Strength and Toughness of Fully Pearlitic Steels,” Metall. Trans. A 7(8), 1217–1224 (1976).

    Google Scholar 

  33. A. R. Rosenfield, G. T. Hahn, and J. D. Embury, “Fracture of Steels Containing Pearlite,” Metall. Trans. 3(11), 2797–2804 (1972).

    Article  CAS  Google Scholar 

  34. Yu. Ya. Meshkov and G. A. Pakharenko, Structure of Metals and Brittleness of Steel Articles (Naukova Dumka, Kiev, 1985) [in Russian].

    Google Scholar 

  35. V. I. Vladimirov and A. E. Romanov, Disclinations in Crystals (Nauka, Leningrad, 1986) [in Russian].

    Google Scholar 

  36. T. I. Tabatchikova, S. B. Mikhailov, V. M. Schastlivtsev, et al., “Internal Friction in Patented U8 Steel after Reannealing,” Fiz. Met. Metalloved. 84(4), 85–97 (1997) [Phys. Met. Metallogr. 84, 381–388 (1997)].

    CAS  Google Scholar 

  37. T. Takahashi and M. Nagumo, “Flow Stress and Work-Hardening of Pearlitic Steel,” Trans. Jpn. Inst. Met. 11(2), 113–119 (1970).

    CAS  Google Scholar 

  38. E. S. Gorkunov, S. V. Grachev, S. V. Smirnov, et al., “Effect of Large Deformations during Drawing on the Physicomechanical Properties of Patented Steel Wire,” Fiz. Met. Metalloved. 98(5), 85–97 (2004) [Phys. Met. Metallogr. 98, 521–532 (2004)].

    CAS  Google Scholar 

  39. V. S. Mes’kin, Introduction to Alloying Steels (Metallurgiya, Moscow, 1964) [in Russian].

    Google Scholar 

  40. E. O. Hall, “The Deformation and Ageing of Mild Steel,” Proc. Phys. Soc. (London) 64(9), 747–753 (1951).

    Article  Google Scholar 

  41. N. J. Petch, “The Cleavage Strength of Polycrystals,” J. Iron Steel Inst. 174(1), 25–28 (1953).

    CAS  Google Scholar 

  42. T. Gladman, I. D. McIvor, and F. B. Pickering, “Some Aspects of the Structure-Property Relationships in High-Carbon Ferrite-Pearlite Steels,” J. Iron Steel Inst. 210(12), 916–930 (1972).

    CAS  Google Scholar 

  43. E. M. Taleff, C. K. Syn, D. R. Lesuer, and O. D. Sherby, “Pearlite in Ultrahigh Carbon Steels: Heat Treatments and Mechanical Properties,” Metall. Mater. Trans. A 27(1), 111–118 (1996).

    Article  Google Scholar 

  44. V. N. Gridnev and Yu. Ya. Meshkov, “Strength and Cold Brittleness of Pearlite Steel,” in Metallofizika (Naukova Dumka, Kiev, 1971), No. 35, pp. 49–58 [in Russian].

    Google Scholar 

  45. V. N. Gridnev, V. G. Gavrilyuk, and Yu. Ya. Meshkov, “On the Relation between the Strength of Cold-Worked Steel and Its Structure,” in Metallofizika (Naukova Dumka, Kiev, 1968), No. 23, pp. 43–46 [in Russian].

    Google Scholar 

  46. I. E. Dolzhenkov and I. I. Dolzhenkov, Spheroidization of Carbides in Steels (Metallurgiya, Moscow, 1984) [in Russian].

    Google Scholar 

  47. V. M. Schastlivtsev, I. L. Yakovleva, and D. A. Mirzaev, “Structural Transformations in Pearlite upon Heating: III. Spheroidization of Carbides; Gibbs-Thomson Equation and the Problem of Carbide Coagulation,” Fiz. Met. Metalloved. 78(3), 104–115 (1994) [Phys. Met. Metallogr. 78, 317–324 (1994)].

    CAS  Google Scholar 

  48. V. M. Schastlivtsev, I. L. Yakovleva, and D. A. Mirzaev, “Structural Transformations in Pearlite upon Heating: II The Origin of Transformation Hardening and the Recrystallization of Ferrite,” Fiz. Met. Metalloved. 78(3), 94–103 (1994) [Phys. Met. Metallogr. 78, 310–316 (1994)].

    CAS  Google Scholar 

  49. I. L. Yakovleva, L. E. Kar’kina, Yu. V. Khlebnikova, et al., “Evolution of the Lamellar Pearlite Structure upon Annealing of Carbon Steel: I. Crystallography of Cementite Spheroidizing,” Fiz. Met. Metalloved. 92(6), 81–88 (2001) [Phys. Met. Metallogr. 92, 602–609 (2001)].

    CAS  Google Scholar 

  50. Yu. Ya. Meshkov, Physical Fundamentals of Fracture of Steel Structures (Naukova Dumka, Kiev, 1981) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Makarov, R.A. Savrai, V.M. Schastlivtsev, T.I. Tabatchikova, L.Yu. Egorova, 2007, published in Fizika Metallov i Metallovedenie, 2007, Vol. 104, No. 5, pp. 542–555.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarov, A.V., Savrai, R.A., Schastlivtsev, V.M. et al. Mechanical properties and fracture upon static tension of the high-carbon steel with different types of pearlite structure. Phys. Metals Metallogr. 104, 522–534 (2007). https://doi.org/10.1134/S0031918X07110129

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X07110129

PACS numbers

Navigation