Skip to main content
Log in

Prediction of Segregation in Binary Metal Nanoparticles: Thermodynamic and Atomistic Simulations

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A complex approach based on thermodynamic and atomistic simulations is used to predict segregation in binary metal nanoparticles of Cu–Ni and Ag–Au. The results of thermodynamic simulation within the model of limited source of segregating component agree with those of the atomistic simulation, and both predict the surface segregation of Cu atoms in the Cu–Ni nanoalloys and the segregation of Ag atoms at the surface of the binary Ag–Au nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. Ferrando, J. Jellinek, and R. L. Johnston, “Nanoalloys: From theory to applications of alloy clusters and nanoparticles,” Chem. Rev. 108, 845–910 (2008).

    Article  Google Scholar 

  2. N. T. Wilson and R. L. Johnston, “A theoretical study of atom ordering in coper–gold nanoalloy clusters,” J. Mater. Chem. 12, 2913–2922 (2002).

    Article  Google Scholar 

  3. Y. S. Ng, T. T. Tsong, and S. B. McLane Jr., “Absolute composition depth profile of a NiCu alloy in a surface segregation study,” Phys. Rev. Lett. 42, 588–591 (1979).

    Article  Google Scholar 

  4. P. R. Webber, C. E. Rojas, P. J. Dobson, and D. Chadwick, “A combined XPS/AES study of Cu segregation to the high and low index surfaces of a Cu–Ni alloy,” Surf. Sci. 105, 20–40 (1981).

    Article  Google Scholar 

  5. H. H. Brongersma, M. J. Sparnay, and T. M. Buck, “Surface segregation in Cu–Ni and Cu–Pt alloys: A comparison of low-energy ion-scattering results with theory,” Surf. Sci. 71, 657–678 (1978).

    Article  Google Scholar 

  6. J. A. V. Butler, “Thermodynamics of the surface of solutions,” Proc. R Soc. A135, 348–363 (1932).

    Article  Google Scholar 

  7. G. Kaptay, “Modelling equilibrium grain boundary segregation, grain boundary energy and grain boundary segregation transition by the extended Butler equation,” J. Mater. Sci. 51, 1738–1755 (2016).

    Article  Google Scholar 

  8. G. Kaptay, “On the partial surface tension of components of a solution,” Langmuir 31, 5796–5804 (2015).

    Article  Google Scholar 

  9. F. Delogu, “Thermodynamic on the nanoscale,” J. Phys. Chem. B 109, 21938–21941 (2005).

    Article  Google Scholar 

  10. V. M. Samsonov, A. G. Bembel, A. Yu. Kartoshkin, S. A. Vasilyev, and I. V. Talyzin, “Molecular dynamics and thermodynamic simulations of segregation phenomena in binary metal nanoparticles,” J. Therm. Anal. Calorim. 133, 1207–1217 (2018).

    Article  Google Scholar 

  11. E. A. Guggenheim, Modern Thermodynamics by the Method of Willard Gibbs (Methuen, London, 1933).

    Book  Google Scholar 

  12. E. P. Ageev, I. A. Uspenskaya, A. G. Bogachev, M. V. Zhiryakova, S. I. Kargov, M. V. Korobov, S. N. Lanin, A. F. Maiorova, S. V. Mel’khanova, and A. A. Popov, Workshop on Physical Chemistry. Thermodynamics (Akademiya, Moscow, 2010) [in Russian].

  13. J. L. White, R. L. Orr, and R. Hultgren, “Thermodynamic properties of silver–gold alloys,” Acta Metall. 5, 747–760 (1957).

    Article  Google Scholar 

  14. S. M. Foiles, “Calculation of the surface segregation of Ni–Cu alloys with the use of the embedded-atom method,” Phys. Rev. B 32, 7685–7693 (1985).

    Article  Google Scholar 

  15. X. W. Zhou, R. A. Johnson, H. N. G. Wadley, “Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers,” Phys. Rev. B 69, 144113 (2004).

    Article  Google Scholar 

  16. G. Grochola, S. P. Russo, and I. K. Snook, “On fitting a gold embedded atom method potential using the force matching method,” J. Chem. Phys. 123, 204719 (2005).

    Article  Google Scholar 

  17. P. L. Williams, Y. Mishin, and J. C. Hamilton, “An embedded-atom potential for the Cu–Ag system. Modelling,” Simul. Mater. Sci. Eng. 14, 817–833 (2006).

    Article  Google Scholar 

  18. A. B. Alchagirov, B. B. Alchairov, T. M. Taova, and Kh. B. Khokonov, “Surface energy and surface tension of solid and liquid metals. Recommended values,” Trans. Join. Weld. Res. Inst. Osaka Univ. 30, 287–291 (2001).

    Google Scholar 

  19. N. Yu. Sdobnyakov, V. M. Samsonov, A. N. Bazulev, and D. A. Novozhilova, “ Estimating the proportionality coefficient in Rusanov’s formula for surface tension using kinetic data on the rates of nanoparticle evaporation and vacancy pore shrinkage,” Bull. Russ. Acad. Sci.: Phys. 81, 380–383 (2017).

    Article  Google Scholar 

  20. V. M. Samsonov, S. A. Vasil’ev, and A. G. Bembel’, “Size dependence of the melting temperature of metallic nanoclusters from the viewpoint of the thermodynamic theory of similarity,” Phys. Met. Metallogr. 117, 749–755 (2016).

    Article  Google Scholar 

Download references

Funding

The work was performed at Tver State University and was supported by the Ministry of Science and Education of the Russian Federation within the framework of the state assignment for the scientific activity (project No. 3.5506.2017/BCh) and by RFBR (project No. 18-03-00132 and No. 18-33-00985).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Samsonov.

Additional information

Translated by O. A. Golovnya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsonov, V.M., Talyzin, I.V., Kartoshkin, A.Y. et al. Prediction of Segregation in Binary Metal Nanoparticles: Thermodynamic and Atomistic Simulations. Phys. Metals Metallogr. 120, 578–583 (2019). https://doi.org/10.1134/S0031918X19060115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19060115

Keywords:

Navigation