Skip to main content
Log in

Effect of the size factor on the magnetic properties of manganite La0.50Ba0.50MnO3

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Nanocrystalline manganite La0.50Ba0.50MnO3 was synthesized by an optimized sol-gel method. The initial sample was subjected to step-by-step heat treatment under air atmosphere. The ion stoichiometry, the morphology of crystallites of ceramics, and the magnetic properties were studied. It is established that the average crystallite size D increases from ∼30 nm to ∼7 μm with increasing annealing temperature. All of the samples studied are characterized by a perovskite-like cubic structure, with the unit cell parameter a increasing continuously from ∼3.787 to ∼3.904 Å with the average crystallite size. The most significant lattice compression (≈3%) occurs in the sample with an average crystallite size of ∼30 nm. The increase in the average crystallite size causes a nonmonotonic increase in the Curic temperature T C from ∼264 to ∼331 K and in the spontaneous magnetic moment σ S from ∼1.52 to ∼3.31 μB/f.u. The anomalous behavior of the magnetic properties of the manganite La0.50Ba0.50MnO3 obtained is explained by the competition between two size effects, namely, the frustration of the indirect exchange interactions Mn3+-O-Mn4+ on the nanocrystallite surface and the crystal lattice compression due to the crystallite surface tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Trukhanov, J. Mater. Chem. 13, 347 (2003).

    Article  Google Scholar 

  2. S. M. Dunaevskiĭ, Fiz. Tverd. Tela (St. Petersburg) 46(2), 193 (2004) [Phys. Solid State 46 (2), 193 (2004)].

    Google Scholar 

  3. K. Dörr, J. Phys. D: Appl. Phys. 39, R125 (2006).

    Article  Google Scholar 

  4. G. Matsumoto, J. Phys. Soc. Jpn. 29, 606 (1970).

    Article  ADS  Google Scholar 

  5. E. Dagotto, New J. Phys. 7, 67 (2005).

    Article  ADS  Google Scholar 

  6. K. Kubo, J. Phys. Soc. Jpn. 33, 21 (1972).

    Article  ADS  Google Scholar 

  7. K. Kubo, J. Phys. Soc. Jpn. 33, 929 (1972).

    Article  ADS  Google Scholar 

  8. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).

    Article  ADS  Google Scholar 

  9. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science (Washington) 264, 413 (1994).

    Article  ADS  Google Scholar 

  10. Y. Tomioka, A. Asamitsu, Y. Moritomo, H. Kuwahara, and Y. Tokura, Phys. Rev. Lett. 74, 5108 (1995).

    Article  ADS  Google Scholar 

  11. E. L. Nagaev, Phys. Rep. 346, 387 (2001).

    Article  ADS  Google Scholar 

  12. F. W. Poulsen, Solid State Ionics 129, 145 (2000).

    Article  Google Scholar 

  13. J. Mizusaki, N. Mori, H. Takai, Y. Yonemura, H. Minamiue, H. Tagawa, M. Dokia, H. Inaba, K. Naraya, T. Sasamoto, and T. Hashimoto, Solid State Ionics 129, 153 (2000).

    Article  Google Scholar 

  14. E. L. Brosha, R. Mukundan, D. R. Brown, F. H. Garzon, J. H. Visser, M. Zanini, Z. Zhou, and E. M. Logotheris, Sens. Actuators, B 69, 171 (2000).

    Article  Google Scholar 

  15. F. Millange, E. Suard, V. Caignaert, and B. Raveau, Mater. Res. Bull. 34, 1 (1999).

    Article  Google Scholar 

  16. I. O. Troyanchuk, S. V. Trukhanov, D. D. Khalyavin, and H. Szymczak, J. Magn. Magn. Mater. 208, 217 (2000).

    Article  ADS  Google Scholar 

  17. B. Ravean, C. Martin, A. Maignan, and M. Hervieu, J. Phys.: Condens. Mater. 14, 1297 (2002).

    Article  ADS  Google Scholar 

  18. F. Millange, V. Caignaert, B. Domenges, B. Raveau, and E. Suard, Chem. Mater. 10, 1974 (1998).

    Article  Google Scholar 

  19. D. Akahoshi, M. Uchida, Y. Tomioka, T. Arima, Y. Matsui, and Y. Tokura, Phys. Rev. Lett. 90, 177 203 (2003).

    Google Scholar 

  20. T. Nakajima, H. Yoshizawa, and Y. Ueda, J. Phys. Soc. Jpn. 73, 2283 (2004).

    Article  ADS  Google Scholar 

  21. J. Spooren, R. I. Walton, and F. Millange, J. Mater. Chem. 15, 1542 (2005).

    Article  Google Scholar 

  22. N. Furukawa and Y. Motome, J. Phys. Soc. Jpn. 74, S203 (2005).

    Google Scholar 

  23. O. Chmaissem, B. Dabrowski, S. Kolesnik, J. Mais, J. D. Jorgensen, S. Short, C. E. Botez, and P. W. Stephens, Phys. Rev. B: Condens. Matter 72, 104 426 (2005).

    Google Scholar 

  24. S. V. Trukhanov, L. S. Lobanovski, M. V. Bushinsky, V. V. Fedotova, I. O. Troyanchuk, A. V. Trukhanov, V. A. Ryzhov, H. Szymczak, R. Szymczak, and M. Baran, J. Phys.: Condens. Matter 17, 6495 (2005).

    Article  ADS  Google Scholar 

  25. S. V. Trukhanov, A. V. Trukhanov, H. Szymczak, R. Szymczak, and M. Baran, J. Phys. Chem. Solids 67, 675 (2006).

    Article  ADS  Google Scholar 

  26. J. Salafranca and L. Brey, Phys. Rev. B: Condens. Matter 73, 214 404 (2006).

    Google Scholar 

  27. S. V. Trukhanov, V. A. Khomchenko, L. S. Lobanovski, M. V. Bushinsky, D. V. Karpinsky, V. V. Fedotova, I. O. Troyanchuk, A. V. Trukhanov, S. G. Stepin, R. Szymczak, C. E. Botez, and A. Adair, Zh. Éksp. Teor. Fiz. 130(3), 457 (2006) [JETP 103 (3), 398 (2006)].

    Google Scholar 

  28. S. V. Trukhanov, I. O. Troyanchuk, A. V. Trukhanov, and H. Szymczak, Diffus. Defect Data, Pt. B 128, 187 (2007).

    Google Scholar 

  29. S. V. Trukhanov, A. V. Trukhanov, C. E. Botez, A. H. Adair, H. Szymczak, and R. Szymczak, J. Phys.: Condens. Matter 19, 266 214 (2007).

    Google Scholar 

  30. H. Aliaga, D. Magnoux, A. Moreo, D. Poilblanc, S. Yunoki, and E. Dagotto, Phys. Rev. B: Condens. Matter 68, 104 405 (2003).

    Google Scholar 

  31. Y. Ueda and T. Nakajima, J. Phys.: Condens. Matter 16, S573 (2004).

    Article  ADS  Google Scholar 

  32. S. V. Trukhanov, Zh. Éksp. Teor. Fiz. 128(3), 597 (2005) [JETP 101 (3), 513 (2005)].

    Google Scholar 

  33. K. S. Shankar, S. Kar, G. N. Subbanna, and A. K. Raychaudhuri, Solid State Commun. 129, 479 (2004).

    Article  ADS  Google Scholar 

  34. S. V. Trukhanov, Zh. Éksp. Teor. Fiz. 127(1), 107 (2005) [JETP 100 (1), 95 (2005)].

    MathSciNet  Google Scholar 

  35. S. V. Trukhanov, I. O. Troyanchuk, V. V. Fedotova, V. A. Ryzhov, A. Maignan, D. Flahaut, H. Szymczak, and R. Szymczak, Phys. Status Solidi B 242, 1123 (2005).

    Article  ADS  Google Scholar 

  36. S. V. Trukhanov, I. O. Troyanchuk, A. V. Trukhanov, H. Szymczak, R. Szymczak, and M. Baran, J. Low Temp. Phys. 139, 459 (2005).

    Article  ADS  Google Scholar 

  37. V. V. Perekalin and S. A. Zonis, Organic Chemistry (Prosveshchenie, Moscow, 1966), p. 135 [in Russian].

    Google Scholar 

  38. I. O. Troyanchuk, S. V. Trukhanov, H. Szymczak, and K. Bärner, J. Phys.: Condens. Matter 12, L155 (2000).

    Article  ADS  Google Scholar 

  39. S. V. Trukhanov, I. O. Troyanchuk, N. V. Pushkarev, and H. Szymczak, Zh. Éksp. Teor. Fiz. 123(1), 128 (2003) [JETP 96 (1), 110 (2003)].

    Google Scholar 

  40. S. V. Trukhanov, L. S. Lobanovski, M. V. Bushinsky, and H. Szymczak, J. Phys.: Condens. Matter 15, 1783 (2003).

    Article  ADS  Google Scholar 

  41. J. M. Gonzalez-Calbet, M. Parras, J. M. Alonso, and M. Vallet-Regi, J. Solid State Chem. 106, 99 (1993).

    Article  ADS  Google Scholar 

  42. S. V. Trukhanov, I. O. Troyanchuk, M. Hervieu, H. Szymczak, and K. Bärner, Phys. Rev. B: Condens. Matter 66, 184424 (2002).

    Google Scholar 

  43. H. M. Rietveld, J. Appl. Crystallogr. 14, 65 (1969).

    Article  Google Scholar 

  44. C. Zener, Phys. Rev. 82, 403 (1951).

    Article  ADS  Google Scholar 

  45. P.-G. de Gennes, Phys. Rev. 118, 141 (1960).

    Article  ADS  Google Scholar 

  46. L. M. Rodriguez-Martinez and J. P. Attfield, Phys. Rev. B: Condens. Matter 58, 2426 (1998).

    ADS  Google Scholar 

  47. R. Mahesh and M. Itoh, Phys. Rev. B: Condens. Matter 60, 2994 (1999).

    ADS  Google Scholar 

  48. E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).

    Article  ADS  Google Scholar 

  49. D. P. Kozlenko, S. V. Trukhanov, E. V. Lukin, I. O. Troyanchuk, B. N. Savenko, and V. P. Glazkov, Pis’ma Zh. Éksp. Teor. Fiz. 85(2), 123 (2007) [JETP Lett. 85 (2), 113 (2007)].

    Google Scholar 

  50. H. Fujishiro, M. Ikebe, and Y. Konno, J. Phys. Soc. Jpn. 67, 1799 (1998).

    Article  ADS  Google Scholar 

  51. J. B. Goodenough, Phys. Rev. 100, 564 (1955).

    Article  ADS  Google Scholar 

  52. J. B. Goodenough, A. Wold, R. J. Arnot, and N. Menyuk, Phys. Rev. 124, 373 (1961).

    Article  ADS  Google Scholar 

  53. P. Dey and T. K. Nath, Phys. Rev. B: Condens. Matter 73, 214 425 (2006).

    Google Scholar 

  54. N. Das, P. Mondal, and D. Bhattacharya, Phys. Rev. B: Condens. Matter 74, 014 410 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Trukhanov.

Additional information

Original Russian Text © S.V. Trukhanov, A.V. Trukhanov, S.G. Stepin, H. Szymczak, C.E. Botez, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 5, pp. 849–856.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trukhanov, S.V., Trukhanov, A.V., Stepin, S.G. et al. Effect of the size factor on the magnetic properties of manganite La0.50Ba0.50MnO3 . Phys. Solid State 50, 886–893 (2008). https://doi.org/10.1134/S1063783408050144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408050144

PACS numbers

Navigation