Skip to main content
Log in

Electronic structure and magnetic properties of doped Al1–x Ti x N (x = 0.03, 0.25) compositions based on cubic aluminum nitride from ab initio simulation data

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The phase stability, electronic structure, and magnetic properties of Al1–x Ti x N compositions based on the metastable aluminum nitride modification with the rock-salt structure at low (x = 0.03) and high (x = 0.25) concentrations of titanium in the system have been investigated using the results of ab initio band calculations. It has been shown that, at low values of x, the partial substitution is characterized by a positive enthalpy, which, however, changes sign with an increase in the titanium concentration. According to the results of the band structure calculations, the doped compositions have electronic conductivity. For x = 0.03, titanium impurity atoms have local magnetic moments (∼0.6 μB), and the electronic spectrum is characterized by a 100% spin polarization of near-Fermi states. Some of the specific features of the chemical bonding in Al1–x Ti x N cubic phases have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. O. Pierson, in Handbook of Refractory Carbides and Nitrides (Noyes, Park Ridge, New Jersey, United States, 1996), pp. 237–239.

    Google Scholar 

  2. A. W. Weimer, G. A. Cochran, G. A. Eisman, J. P. Henley, B. D. Hook, L. K. Mills, T. A. Guiton, A. K. Knudsen, N. R. Nicholas, J. E. Volmering, and W. G. Moore, J. Am. Ceram. Soc. 77, 3 (1994).

    Article  Google Scholar 

  3. A. W. Wemer, Carbide, Nitride and Boride Materials: Synthesis and Processing (Chapman and Hall, London, 1997), pp. 6–68.

    Google Scholar 

  4. A. Madan, I. W. Kim, S. C. Cheng, P. Yashar, V. P. Dravid, and S. A. Barnett, Phys. Rev. Lett. 78, 1743 (1997).

    Article  ADS  Google Scholar 

  5. R. Thapa, B. Saha, and K. K. Chattopadhyay, J. Alloys Compd. 475, 373 (2009).

    Article  Google Scholar 

  6. X.-P. Hao, M.-Y. Yu, D.-L. Cui, Q.-L. Wang, and M.-H. Jiang, J. Cryst. Growth 242, 229 (2002).

    Article  ADS  Google Scholar 

  7. V. Heiner and R. Heidrum, Patentschrift DD 292903 A5, Bundesrepublik Deutschland (1991).

    Google Scholar 

  8. Q. Zhong, S. Huang, Y. Fu, X. Shen, J. Zeng, and H. He, Appl. Mech. Mater. 633–634, 52 (2014).

    Article  Google Scholar 

  9. A. J. Wang, S. L. Shang, T. Du, Y. Kong, L. J. Zhang, L. Chen, D. D. Zhao, and Z. K. Liu, Comput. Mater. Sci. 48, 705 (2010).

    Article  Google Scholar 

  10. W. Feng, S. Cui, H. Hu, W. Zhao, and Z. Gong, Physica B (Amsterdam) 405, 555 (2010).

    Article  ADS  Google Scholar 

  11. F. Litimein, B. Bouhafs, Z. Dridi, and P. Ruterana, New J. Phys. 4, 64.1 (2002).

    Article  Google Scholar 

  12. W. J. Fan, M. F. Li, T. C. Chong, and J. B. Xia, J. Appl. Phys. 79, 188 (1996).

    Article  ADS  Google Scholar 

  13. S. Berrah, H. Abid, A. Boukortt, and M. Sehil, Turk. J. Phys. 30, 513 (2006).

    Google Scholar 

  14. N. Norrby, H. Lind, G. Parakhonskiy, M. P. Johansson, F. Tasnadi, L. S. Dubrovinsky, N. Dubrovinskaia, A. Abrikosov, and M. Oden, J. Appl. Phys. 113, 053515 (2013).

    Article  ADS  Google Scholar 

  15. M. E. Shervin and T. J. Drummond, J. Appl. Phys. 69, 8423 (1991).

    Article  ADS  Google Scholar 

  16. A. Rubio, J. L. Corkill, M. L. Cohen, E. L. Shirley, and S. G. Louie, Phys. Rev. B: Condens. Matter 48, 11810 (1993).

    Article  ADS  Google Scholar 

  17. D. Fritsch, H. Schmidt, and M. Grundmann, Phys. Rev. B: Condens. Matter 67, 235205 (2003).

    Article  ADS  Google Scholar 

  18. Y. C. Cheng, X. L. Wu, J. Zhu, L. L. Xu, S. H. Li, and P. K. Chu, J. Appl. Phys. 103, 073707 (2008).

    Article  ADS  Google Scholar 

  19. X. Zhang, Z. Chen, S. Zhang, R. Liu, H. Zong, Q. Jing, G. Li, M. Ma, and W. Wang. J. Phys.: Condens. Matter. 19, 425231 (2007).

    ADS  Google Scholar 

  20. W. Zhang, X.-R. Chen, L.-C. Cai, and Q.-Q. Gou, Commun. Theor. Phys. 50, 990 (2008).

    Article  ADS  Google Scholar 

  21. Z.-Y. Jiao, S.-H. Ma, and J.-F. Yang, Solid State Sci. 13, 331 (2011).

    Article  ADS  Google Scholar 

  22. N. E. Christensen and I. Gorczyca, Phys. Rev. B: Condens. Matter 47, 4307 (1993).

    Article  ADS  Google Scholar 

  23. P. E. Van Camp, V. E. Van Doren, and J. T. Devreese, Phys. Rev. B: Condens. Matter 44, 9056 (1991).

    Article  ADS  Google Scholar 

  24. M. Shahien, M. Yamada, T. Yasui, and M. Fukumoto, Mater. Trans. 54, 207 (2013).

    Article  Google Scholar 

  25. D. J. As and C. Mietze, Phys. Status Solidi A 210, 474 (2013).

    Article  ADS  Google Scholar 

  26. T. Schupp, G. Rossbach, P. Schley, R. Goldhahn, M. Roppischer, N. Esser, C. Cobet, K. Lischka, and D. J. As, Phys. Status Solidi A 207, 1365 (2010).

    Article  ADS  Google Scholar 

  27. M. Yu, X. Hao, D. Cui, Q. Wang, X. Xu, and M. Jiang, Nanotechnology 14, 29(2003).

    Article  ADS  Google Scholar 

  28. L. D. Wang and H. S. Kwok, Appl. Surf. Sci. 154–155, 439 (2000).

    Article  Google Scholar 

  29. L. Li, X. Hao, N. Yu, D. Cui, X. Xu, and M. Jiang, J. Cryst. Growth 258, 268 (2003).

    Article  ADS  Google Scholar 

  30. J. Wang, W. L. Wang, P. D. Ding, Y. X. Yang, L. Fang, J. Esteve, M. C. Polo, and G. Sanchez, Diamond Relat. Mater. 8, 1342 (1999).

    Article  ADS  Google Scholar 

  31. K. Sumitani, R. Ohtani, T. Yoshida, S. Mohri, and T. Yoshitake, Inst. Phys. Conf. Ser.: Mater. Sci. Eng. 24, 012017 (2011).

    Google Scholar 

  32. Y. Fu, X. Li, Y. Wang, H. He, and X. Shen, Appl. Phys. A: Mater. Sci. Process. 106, 937 (2012).

    Article  ADS  Google Scholar 

  33. B. Alling, A. V. Ruban, A. Karimi, O. E. Peil, S. I. Simak, L. Hultman, and I. A. Abrikosov, Phys. Rev. B: Condens. Matter 75, 045123 (2007).

    Article  ADS  Google Scholar 

  34. B. Alling, T. Marten, I. A. Abrikosov, and A. Karimi, J. Appl. Phys. 102, 044314 (2007).

    Article  ADS  Google Scholar 

  35. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  36. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (University of Technology, Vienna, 2014).

    Google Scholar 

  37. P. E. Blochl, O. Jepsen, and O. K. Anderson, Phys. Rev. B: Condens. Matter 49, 16223 (1994).

    Article  ADS  Google Scholar 

  38. M. G. Brik and C.-G. Ma, Comput. Mater. Sci. 51, 380 (2012).

    Article  Google Scholar 

  39. A. L. Ivanovskii, V. P. Zhukov, and V. A. Gubanov, Electronic Structure of Refractory Carbides and Nitrides (Nauka, Moscow, 1990; Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  40. J. Robertson, K. Xiong, and S. J. Clark, Thin Solid Films 496, 1 (2006).

    Article  ADS  Google Scholar 

  41. D. M. Roessler and W. C. Walker, Phys. Rev. 159, 733 (1967).

    Article  ADS  Google Scholar 

  42. S. Nisatharaju, R. Ayyappa, and D. Balamurugan, Asian J. Appl. Sci. 7, 780 (2014).

    Article  Google Scholar 

  43. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).

    Article  ADS  Google Scholar 

  44. R. Q. Wu, G. W. Peng, L. Liu, Y. P. Feng, Z. G. Huang, and Q. Y. Wu, Appl. Phys. Lett. 89, 142501 (2006).

    Article  ADS  Google Scholar 

  45. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Clarendon, Oxford, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Bannikov.

Additional information

Original Russian Text © V.V. Bannikov, A.R. Beketov, M.V. Baranov, A.A. Elagin, V.S. Kudyakova, R.A. Shishkin, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 5, pp. 897–904.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bannikov, V.V., Beketov, A.R., Baranov, M.V. et al. Electronic structure and magnetic properties of doped Al1–x Ti x N (x = 0.03, 0.25) compositions based on cubic aluminum nitride from ab initio simulation data. Phys. Solid State 58, 924–932 (2016). https://doi.org/10.1134/S106378341605005X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341605005X

Keywords

Navigation