Skip to main content
Log in

Structure and Magnetic Properties of Layered Nanowires of 3d-Metals, Fabricated by the Matrix Synthesis Method

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Based on PET track etched membranes, arrays of layer nanowires 100 nm in diameter, consisting of alternating Ni/Cu and Co/Cu layers are grown by the matrix synthesis method. Galvanic deposition processes are studied and conditions for fabricating layer nanowires with different thicknesses for magnetic (Ni or Co) and nonmagnetic (Cu) layer components are determined. An electron microscopic study is performed to verify conditions for fabricating layer nanowires and to correct geometrical sizes of alternating layers. Magnetization curves of produced arrays of layer nanowires are measured by vibration magnetometry methods at room temperature for two extreme orientations of a scanning magnetic field, i.e., parallel and perpendicular ones with respect to the nanowire growth axis. It is shown that the magnetic anisotropy of the nanowire array is controlled not only by the chemical composition, but also the thickness and alternation period of magnetic metal layers in nanowires. The dependence of the magnetostatic energy and demagnetizing field in the synthesized layer nanowires on the magnetic metal filling factor is numerically evaluated; the results are in qualitative agreement with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. C. R. Martin, Science (Washington, DC, U. S.) 266, 1961 (1994).

    Article  ADS  Google Scholar 

  2. A. Fert and L. Piraux, J. Magn. Magn. Mater. 200, 338 (1999).

    Article  ADS  Google Scholar 

  3. T. Thurn, T. Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, and T. P. Russell, Science (Washington, DC, U. S.) 290, 2126 (2000).

    Article  ADS  Google Scholar 

  4. H. Schlorb, V. Haehnel, M. S. Khatri, A. Srivastav, A. Kumar, L. Schultz, and S. Fahler, Phys. Status Solidi B 247, 2364 (2010).

    Article  ADS  Google Scholar 

  5. Y. P. Ivanov, A. Chuvilin, S. Lopatin, and J. Kosel, ACS Nano 10, 5326 (2016).

    Article  Google Scholar 

  6. Yu. V. Gulyaev, S. G. Chigarev, A. I. Panas, E. A. Vilkov, N. A. Maksimov, D. L. Zagorskii, and A. S. Shatalov, Tech. Phys. Lett. 45, 271 (2019).

    Article  ADS  Google Scholar 

  7. J.-G. Zhu, Proc. IEEE 96, 1786 (2008).

    Article  Google Scholar 

  8. S. N. Vdovichev, B. A. Gribkov, S. A. Gusev, A. Yu. Klimov, V. L. Mironov, I. M. Nefedov, V. V. Rogov, A. A. Fraerman, and I. A. Shereshevskii, JETP Lett. 94, 386 (2011).

    Article  ADS  Google Scholar 

  9. A. A. Fraerman, B. A. Gribkov, S. A. Gusev, A. Yu. Klimov, V. L. Mironov, D. S. Nikitushkin, V. V. Rogov, S. N. Vdovichev, B. Hjorvarsson, and H. Zabel, J. Appl. Phys. 103, 073916 (2008).

    Article  ADS  Google Scholar 

  10. L. Piraux, J. M. George, J. F. Despres, C. Leroy, E. Ferain, and R. Legras, Appl. Phys. Lett. 65, 2484 (1994).

    Article  ADS  Google Scholar 

  11. A. Blondel, B. Doudin, and J.-Ph. Ansermet, J. Magn. Magn. Mater. 165, 34 (1997).

    Article  ADS  Google Scholar 

  12. J. Wong, P. Greene, R. K. Dumas, and K. Lui, Appl. Phys. Lett. 94, 032504 (2009).

    Article  ADS  Google Scholar 

  13. M. Chen, C.-L. Chien, and P. C. Searson, Chem. Mater. 18, 1595 (2006).

    Article  Google Scholar 

  14. M. Chen, P. C. Searson, and C. L. Chien, J. Appl. Phys. 93, 8253 (2003).

    Article  ADS  Google Scholar 

  15. L.-P. Carignan, Ch. Lacroix, A. Ouimet, M. Ciureanu, A. Yelon, and D. Menard, J. Appl. Phys. 102, 023905 (2007).

    Article  ADS  Google Scholar 

  16. N. Maleak, P. Potpattanapol, N. N. Bao, J. Ding, W. Wongkokuo, I. M. Tang, and S. Thongme, J. Magn. Magn. Mater. KD 354, 262 (2014).

    Article  ADS  Google Scholar 

  17. A. Shirazi Tehrani, M. Almas Kashi, A. Ramazani, and A. H. Montaze, Superlatt. Microstruct. 95, 38 (2016).

    Article  ADS  Google Scholar 

  18. F. Beron, L. P. Carignan, D. Menard, and A. Yelon, IEEE Trans. Magn. 44, 11 (2008).

    Article  Google Scholar 

  19. M. Susano, M. P. Proenca, S. Moraes, C. T. Sousa, and J. P. Araújo, Nanotechnology 27, 335301 (2016).

    Article  Google Scholar 

  20. S. Moraes, D. Navas, F. Béron, M. P. Proenca, K. R. Pirota, C. T. Sousa, and J. P. Araújo, Nanomaterials 8, 490 (2018).

    Article  Google Scholar 

  21. D. L. Zagorskii, I. M. Doludenko, D. A. Cherkasov, O. M. Zhigalina, D. N. Khmelenin, I. M. Ivanov, D. A. Bizyaev, R. I. Khaibulin, and S. A. Shatalov, Phys. Solid State 61, 1634 (2019).

    Article  ADS  Google Scholar 

  22. I. M. Doludenko, D. B. Trushina, T. N. Borodina, T. V. Bukreeva, and D. L. Zagorskii, in Proceedings of the 3rd International Conference with School of Young Scientists on Physics for Life Sciences (FTI im. A. F. Ioffe, St. Petersburg, 2019), p. 216.

  23. D. K. Nurgaliev and P. G. Yasonov, RF Patent on Useful Model No. 81805, Byull. FIPS, No. 9 (2009).

  24. K. Warmuth, Arch. Elektrotech. 41, 242 (1954).

    Article  Google Scholar 

  25. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974), p. 786.

Download references

ACKNOWLEDGMENTS

The authors are grateful to P.Yu. Apel (Joint Institute for Nuclear Research, Dubna) for polymer matrices put at their disposal.

Funding

This study was supported by the Ministry of Education and Science of the Russian Federation within the State contracts of the Federal Scientific Research Center “Crystallography and Photonics” of the Russian Academy of Sciences and the Kazan Scientific Center of the Zavoisky Physico-Technical Institute, Russian Academy of Sciences, project no. AAAA-A18-118041760011-2. Microscopic studies were supported by the Russian Foundation for Basic Research, project no. 18-02-00515_а.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Zagorskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherkasov, D.A., Zagorskii, D.L., Khaibullin, R.I. et al. Structure and Magnetic Properties of Layered Nanowires of 3d-Metals, Fabricated by the Matrix Synthesis Method. Phys. Solid State 62, 1695–1705 (2020). https://doi.org/10.1134/S1063783420090048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420090048

Keywords:

Navigation