Skip to main content
Log in

A new approach to the control of biochemical reactions in a magnetic nanosuspension using a low-frequency magnetic field

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A new approach to the control of biochemical reactions in magnetic nanosuspensions exposed to a low-frequency (nonheating) magnetic field, which has a nanomechanical effect on macro-molecules chemically linked to magnetic nanoparticles (MNPs), is described. Experimental verification of this approach showed that a magnetic field with an intensity of from 15 to 220 kA/m and a frequency of 50 Hz affected the kinetics of a chemical reaction in an aqueous solution containing suspended MNPs of magnetite (FeO · Fe2O3) and chymotrypsin molecules linked to them through polymer bridges. The field dependence of the effect is shown. The effect is interpreted within the framework of a nanomechanical model taking into account the deformations, conformational change, and destruction of weak bonds in the enzyme macromolecule under the action of the forces applied to it during the orientation of MNPs in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Arruebo, R. Fernandez-Pacheco, M. R. Ibarra, and J. Santamaria, Nano Today 2(6), 22 (2007).

    Article  Google Scholar 

  2. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, Adv. Drug Deliv. Rev. 63, 24 (2011).

    Article  Google Scholar 

  3. O. Veiseh, I. W. Gunn, and M. Zhang, Adv. Drug Deliv. Rev. 62, 284 (2010).

    Article  Google Scholar 

  4. L.-M. Lacroix, D. Ho, and S. Sun, Curr. Topics Med. Chem. 10(12), 1184 (2010).

    Article  Google Scholar 

  5. T. Hoare, B. P. Timko, J. Santamaria, G. F. Goya, S. Irusta, S. Lau, C. F. Stefanescu, D. Lin, R. Langer, and D. S. Kohane, Nano Letters 11, 1395 (2011).

    Article  ADS  Google Scholar 

  6. A. M. Defrus, G. Maltzahn, T. J. Harris, T. Duza, K. S. Vecchio, E. Ruoslahti, and S. N. Bhatia, Adv. Mater. 19, 3932 (2007).

    Article  Google Scholar 

  7. C. R. Thomas, D. P. Ferris, J.-H. Lee, E. Choi, M.Y. Cho, E. S. Kim, J. F. Stoddart, J.-S. Shin, J. Cheon, and J. I. Zink, J. Am. Chem. Soc. 32, 10 623 (2010).

    Google Scholar 

  8. B. Jeyadevan, Ceram. Soc. Jpn. 118(6), 391 (2010).

    Article  Google Scholar 

  9. R. Hergt, S. Dutz, R. Muller, and M. Zeisberger, J. Phys. Condens. Matter 18, 2919 (2006).

    Article  ADS  Google Scholar 

  10. F. Gaseau, M. Levy, and C. Wilhem, Nanomedicine 3(6), 831 (2008).

    Article  Google Scholar 

  11. P. Cherukuri, E. S. Glazer, and S. A. Curley, Adv. Drug Deliv. Rev. 62, 339 (2010).

    Article  Google Scholar 

  12. D. Stigter and C. Bustamante, Biophys. J. 75, 1197 (1998).

    Article  ADS  Google Scholar 

  13. K. C. Neuman and A. Nagy, Nature Methods 5(6), 491 (2008).

    Article  Google Scholar 

  14. R. Conroy, Handbook of Molecular Force Spectroscopy, Ed. by A. Noy (Springer, 2008), pp. 23–96.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Golovin.

Additional information

Original Russian Text © Yu.I. Golovin, N.L. Klyachko, D.Yu. Golovin, M.V. Efremova, A.A. Samodurov, M. Sokolski-Papkov, A.V. Kabanov, 2013, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 39, No. 5, pp. 24–32.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golovin, Y.I., Klyachko, N.L., Golovin, D.Y. et al. A new approach to the control of biochemical reactions in a magnetic nanosuspension using a low-frequency magnetic field. Tech. Phys. Lett. 39, 240–243 (2013). https://doi.org/10.1134/S106378501303005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378501303005X

Keywords

Navigation