Skip to main content
Log in

Studying the emergence of invasiveness in tumours using game theory

  • Topical issue dedicated to ECCS2007 - Dresden
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

Tumour cells have to acquire a number of capabilities if a neoplasm is to become a cancer. One of these key capabilities is increased motility which is needed for invasion of other tissues and metastasis. This paper presents a qualitative mathematical model based on game theory and computer simulations using cellular automata. With this model we study the circumstances under which mutations that confer increased motility to cells can spread through a tumour made of rapidly proliferating cells. The analysis suggests therapies that could help prevent the progression towards malignancy and invasiveness of benign tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P.C. Nowell, Science, 4260 194, 23 (1976)

    Google Scholar 

  • D. Hanahan, R. Weinberg, Cell 100, 57 (2000)

    Article  Google Scholar 

  • M. Mareel, F. Van Roy, The human E-cadherin/catenin complex: a potent invasion and tumor supressor, Verhandelingen – Koninklijke Academie voor Geneeskunde van België 60, 567 (1998)

    Google Scholar 

  • R.A. Foty, M.S. Steinberg, Int. J. Dev. Biol. 48, 397 (2004)

    Article  Google Scholar 

  • L. Merlo, J. Pepper, B. Reid, C. Maley, Nat. Rev. Cancer 6, 924 (2006)

    Article  Google Scholar 

  • R. Gatenby, P. Maini, Nature 421, 321 (2003)

    Article  ADS  Google Scholar 

  • J. von Neumann, O. Morgernstern, Theory of games and economic behaviour (Princeton University Press, Princeton, NJ, 1953)

  • M. Merston-Gibbons, An introduction to game-theoretic modelling, 2nd edn. (American Mathematical Society, 2000)

  • J. Maynard Smith, Evolution and the theory of games (Cambridge University Press, Cambridge, 1982)

  • J. Hofbauer, K. Sigmund, Evolutionary games and population dynamics (Cambridge University Press, Cambridge, 1998)

  • D. Basanta, A. Deutsch, in Selected topics on cancer modelling: genesis, evolution, inmune competition, therapy, edited by N. Bellomo, M. Chaplain, E. De Angelis (Birkhauser, Boston, 2008)

  • I.P.M. Tomlinson, Eur. J. Cancer 33, 1495 (1997)

    Article  Google Scholar 

  • I.P.M. Tomlinson, W.F. Bodmer, Brit. J. Cancer 75, 157 (1997)

    Google Scholar 

  • L.A. Bach, S.M. Bentzen, J. Alsner, F.B. Christiansen, Eur. J. Cance. 37, 2116 (2001)

    Article  Google Scholar 

  • L.A. Bach, D.J.T. Sumpter, J. Alsner, V. Loeschke, J. Theor. Med. 5, 47 (2003)

    Article  MATH  Google Scholar 

  • R. Gatenby, T. Vincent, Cancer Res. 63, 6212 (2003)

    Google Scholar 

  • R. Gatenby, T. Vincent, R. Gillies, Math. Mod. Meth. Appl. S 15, 1619 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • R. Gatenby, T. Vincent, Mol. Cancer Ther. 2, 919 (2007)

    Google Scholar 

  • Y. Mansury, M. Diggory, T.S. Deisboeck, J. Theo. Biol. 238, 146 (2006)

    Article  MathSciNet  Google Scholar 

  • R. Axelrod, W. Hamilton, Science 211, 1390 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  • R. Axelrod, D. Axelrod, K. Pienta, PNAS 103, 13474 (2006)

    Article  ADS  Google Scholar 

  • J. von Neumann, Theory of self-reproducing automata (University of Illinois Press, 1966)

  • A. Deutsch, S. Dormann, ellular Automaton Modeling of Biological Pattern Formation: Characterization, Applications, and Analysis (Birkhäuser, Boston, 2005)

  • Mathematical Modeling of Biological Systems, Volume I: Cellular Biophysics, Regulatory Networks, Development, Biomedicine, and Data Analysis, edited by A. Deutsch, L. Brusch, H. Byrne, G. de Vries, H. Herzel (Birkhäuser, Boston, 2008)

  • J. Moreira, A. Deutsch, Adv. Compl. Sys. 5, 247 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • A.R. Kansal, S. Torquato, E.A. Chiocca, T.S. Deisboeck, J. Theor. Biol. 207, 367 (2000)

    Article  Google Scholar 

  • B. Ribba, T. Alarcon, K. Marron, P. Maini, Z. Agur, in Proceedings, Cellular Automata: 6th International Conference on Cellular Automata for Research and Industry, ACRI 2004, 2004

  • M. Wurzel, K.L. Schaller, M. Simon, A. Deutsch, J. Theor. Medic. 6, 21 (2005)

    MATH  MathSciNet  Google Scholar 

  • H. Hatzikirou, A. Deutsch, C. Schaller, M. Simon, K. Swanson, Math. Mod. Meth. Appl. Sci. 15, 1779 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • H. Hatzikirou, A Deutsch, Curr. Top. Dev. Biol. 81, 401 (2007)

    Article  Google Scholar 

  • T. Alarcon, H. M. Byrne, P.K. Maini, J. Theor. Biol. 225, 257 (2003)

    Article  MathSciNet  Google Scholar 

  • R.M.H. Merks, J.A. Glazier, Nonlinearity 19, 1 (2006)

    Article  MathSciNet  Google Scholar 

  • S. Spencer, R. Gerety, K. Pienta, S. Forrest, PLOS Computational Biology 2, 939 (2006)

    Article  Google Scholar 

  • A. Anderson, A. Weaver, P. Cummings, V. Quaranta, Cell 127, 905 (2006)

    Article  Google Scholar 

  • A. Giese, M. Loo, N. Tran, S.W. Haskett, M.E. Berens, Int. J. Cance. 67, 275 (1996)

    Article  Google Scholar 

  • A. Giese, R. Bjerkvig, M.E. Berens, M. Westphal, J. Clin. Oncol. 21, 1624 (2003)

    Article  Google Scholar 

  • P. Friedl, K. Wolf, Nat. Rev. Cancer. 3, 362 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Basanta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basanta, D., Hatzikirou, H. & Deutsch, A. Studying the emergence of invasiveness in tumours using game theory. Eur. Phys. J. B 63, 393–397 (2008). https://doi.org/10.1140/epjb/e2008-00249-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00249-y

PACS.

Navigation