Skip to main content
Log in

Charge carrier mobility in sulphonated and non-sulphonated Ni phthalocyanines: experiment and quantum chemical calculations

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The objective of this interdisciplinary paper was to study theoretically and experimentally the electronic part of charge carrier transport in the class of sodium salts of sulphonated Ni phthalocyanine as candidates for p-type channels in organic field-effect transistors. These materials were selected because of their enhanced solubility as compared to their non-sulphonated counterparts. The values of the field-effect charge carrier mobility determined on the OFET structures using NiPc(SO3Na)x films were much higher than the charge carrier mobility obtained on the respective device prepared from non-substituted phthalocyanine. In order to explain differences between charge carrier mobility of sulphonated and non-sulphonated Ni phthalocyanines, quantum chemistry studies of molecular aggregates were performed. Quantum chemistry modeling of the semiconductive molecular systems is new and progressive – we highlighted factors at the molecular level which led to the enhancement of the charge carrier mobility in systems containing SO3Na groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Reed, Proc. IEEE 87, 652 (1999)

    Article  Google Scholar 

  2. D. Braga, G. Horowitz, Adv. Mater. 21, 1 (2009)

    Article  Google Scholar 

  3. I. Kratochvílová, S. Nešpůrek, J. Šebera, S. Záliš, M. Pavelka, G. Wang, J. Sworakowski, Eur. Phys. J. E 25, 299 (2008)

    Article  Google Scholar 

  4. I. Kratochvílová, K. Král, M. Bunček, A. Víšková, S. Nešpůrek, A. Kochalska, T. Todorciuc, M. Weiter, B. Schneider, Biophys. Chem. 138, 3 (2008)

    Article  Google Scholar 

  5. I. Kratochvílová, K. Král, M. Bunček, S. Nešpůrek, T. Todorciuc, M. Weiter, J. Navrátil, B. Schneider, J. Pavluch, Cent. Eur. J. Phys. 6, 422 (2008)

    Article  Google Scholar 

  6. S. Záliš, I. Kratochvílová, A. Zambova, J. Mbindyo, T.E. Mallouk, T.S. Mayer, Eur. Phys. J. E 18, 201 (2005)

    Article  Google Scholar 

  7. M.C. Reese, M. Roberts, M. Ling, Z. Bao, Mater. Today 7, 20 (2004)

    Article  Google Scholar 

  8. C.D. Dimitrakopoulos, P.R.L. Malenfant, Adv. Mater. 14, 99 (2002)

    Article  Google Scholar 

  9. R. Zeis, T. Siegrist, C. Kloc, Appl. Phys. Lett. 86, 022103 (2005)

    Article  ADS  Google Scholar 

  10. S. Nešpůrek, G. Chaidogiannos, N. Glezos, G. Wang, S. Böhm, J. Rakušan, M. Karásková, Mol. Cryst. Liq. Cryst. 468, 355 (2007)

    Google Scholar 

  11. F. Yang, M. Shtein, S.R. Forrest, Nat. Mater. 4, 37 (2005)

    Article  ADS  Google Scholar 

  12. M.J. Panzer, C.D. Frisbie, J. Am. Chem. Soc. 129, 6599 (2007)

    Article  Google Scholar 

  13. G. Wang, S. Nešpůrek, I. Zhivkov, J. Sworakowski, K. Yakushi, EMPS Proceedings, Prague (2004), p. 169

  14. G. Chaidogiannos, F. Petraki, N. Glezos, S. Kennou, S. Nešpůrek, Mater. Sci. Eng. B- Solid State Mater. Adv. Technol. 152, 105 (2008)

    Google Scholar 

  15. G. Chaidogiannos, F. Petraki, N. Glezos, S. Kennou, S. Nešpůrek, Appl. Phys. A, in press

  16. S. Nešpůrek, I. Koropecký, Material Sci. (Poland) 13, 181 (1987)

    Google Scholar 

  17. S. Nešpůrek, I. Koropecký, Material Sci. (Poland) 10, 129 (1984)

    Google Scholar 

  18. D. Briggs, M.P. Seah, Practical Surface Analysis (Wiley, New York, 1990)

    Google Scholar 

  19. A.R. Brown, C.P. Jarrett, D.M. de Leeuw, M. Matters, Synth. Met. 88, 37 (1997)

    Article  Google Scholar 

  20. Gaussian 03, Revision C.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople (Gaussian, Inc., Wallingford CT, 2004).

  21. M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, D.J. DeFrees, J.A. Pople, M. S. Gordon, J. Chem. Phys. 77, 3654 (1982)

    Article  ADS  Google Scholar 

  22. V.A. Rassolov, J.A. Pople, M.A. Ratner, T.L. Windus, J. Chem. Phys. 109, 1223 (1998)

    Article  ADS  Google Scholar 

  23. Y. Zhao, D.G. Truhlar, J. Phys. Chem. A 108, 6908 (2008)

    Article  Google Scholar 

  24. Z. Slanina, P. Pulay, S. Nagase, J. Chem. Theory Comput. 2, 782 (2006)

    Article  Google Scholar 

  25. P. Hobza, R. Zahradnik, K. Muller-Dethlefs, Collect. Czech. Chem. Commun. 71, 443 (2006)

    Article  Google Scholar 

  26. N. Marom, O. Hod, G.E. Scuseria, L. Kronik, J. Chem. Phys. 128, 164107 (2008)

    Article  ADS  Google Scholar 

  27. N. Marom, L. Kronik, Appl. Phys. A 95, 159 (2009)

    Article  ADS  Google Scholar 

  28. B. Bialek, I.G. Kim, J.I. Lee, Synthetic Metals 129, 151 (2002)

    Article  Google Scholar 

  29. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  30. Y. Zhao, N.E. Schultz, D.G. Truhlar, J. Chem. Theor. Comput. 2, 364 (2006)

    Article  Google Scholar 

  31. M.-S. Liao, S. Scheiner, J. Comput. Chem. 23, 1391 (2002)

    Article  Google Scholar 

  32. G. Guillard, R.Madru, M. Al Sadoun, M. Maitrot, J. Appl. Phys. 66, 4554 (1989)

    Article  ADS  Google Scholar 

  33. Z. Bao, A. Lovinger, A. Dodabalapur, Appl. Phys. Lett. 69, 3066 (1996)

    Article  ADS  Google Scholar 

  34. M. Ashida, N. Uyeda, E. Suito, Bull. Chem. Soc. Jpn. 39, 2616 (1966)

    Article  Google Scholar 

  35. R. Hiesgen, M. Rabisch, H. Bottcher, D. Meissner, Sol. Energy Mater. Sol. Cells 61, 73 (2000)

    Article  Google Scholar 

  36. F. Petraki, S. Kennou, Physica Status Solidi (C) Current Topics in Solid State Physics 5, 3708 (2008)

    Article  Google Scholar 

  37. V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, J.L. Brédas, Chem. Rev. 107, 926 (2007)

    Article  Google Scholar 

  38. M.D. Newton, Chem. Rev. 91, 767 (1991)

    Article  Google Scholar 

  39. M.D. Newton, R.J. Cave, Molecular Electronics (Blackwell, Malden MA, 1997)

    Google Scholar 

  40. A. Farazdel, M. Dupuis, E. Clementi, A. Aviram, J. Am. Chem. Soc. 112, 4206 1990

    Article  Google Scholar 

  41. S. Pheasant, J.A. Kouzelos, H. Van Ryswyk, R.J. Cave, Mol. Simul. 32, 677 (2006)

    Article  Google Scholar 

  42. D. Kumar, R.C. Sharma, Eur. Polym. J. 34, 1053 (1998)

    Article  Google Scholar 

  43. L. Li, Q. Tang, H. Li, W. Hu, J. Phys. Chem. B 112, 10405 2008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kratochvílová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šebera, J., Nešpůrek, S., Kratochvílová, I. et al. Charge carrier mobility in sulphonated and non-sulphonated Ni phthalocyanines: experiment and quantum chemical calculations. Eur. Phys. J. B 72, 385–395 (2009). https://doi.org/10.1140/epjb/e2009-00368-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00368-y

Keywords

Navigation